Three-tesla magnetic resonance (MR) imaging offers substantially higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than 1.5-T MR imaging does, which can be used to improve image resolution and shorten imaging time. Because of these increases in SNR and CNR, as well as changes in T1 and T2 relaxation times, an increase in magnetic susceptibility, and an increase in chemical shift effect, many abdominal applications can benefit from 3.0-T imaging. Increased CNR obtained with a gadolinium-based contrast agent improves lesion conspicuity, requires less intravenous contrast material, and improves MR angiography by increasing spatial and temporal resolution. Increased SNR improves fluid conspicuity and resolution for applications such as MR cholangiopancreatography. Increased chemical shift effect also improves spectral resolution for MR spectroscopy. Several potential problems remain for abdominal imaging at 3.0 T. Limitations on energy deposition may require compromises in pulse sequence timing and flip angles. These compromises result in prolonged imaging time and altered image contrast. Magnetic susceptibility and chemical shift artifacts are worsened, but they may be counteracted by shortening echo time, performing parallel imaging, and increasing bandwidth. Radiofrequency field inhomogeneity is also a major concern in imaging larger fields of view and often leads to standing wave effects and large local variations in signal intensity. Many issues related to MR device compatibility and safety have yet to be addressed at 3.0 T. A 3.0-T MR imaging system has a higher initial cost and a higher cost of upkeep than a 1.5-T system does.
Appendicitis remains the most common surgical pathology responsible for right lower quadrant (RLQ) abdominal pain presenting to emergency departments in the United States, where the incidence continues to increase. Appropriate imaging in the diagnosis of appendicitis has resulted in decreased negative appendectomy rate from as high as 25% to approximately 1% to 3%. Contrast-enhanced CT remains the primary and most appropriate imaging modality to evaluate this patient population. MRI is approaching CT in sensitivity and specificity as this technology becomes more widely available and utilization increases. Unenhanced MRI and ultrasound remain the diagnostic procedures of choice in the pregnant patient. MRI and ultrasound continue to perform best in the hands of experts.
NCFs are commonly encountered on cardiac MRI studies, many of which are clinically relevant. Proper recognition of NCFs is critical to the comprehensive management of patients referred for cardiac MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.