Summary The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the inter-conversion of pyruvate and lactate, is upregulated in human cancers and is associated with aggressive tumor outcomes. Here we use a novel inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by re-activation of mitochondrial function in vitro but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC including cancer stem cell-dependent drug resistant tumors.
Eltrombopag is a first-in-class, orally bioavailable, small-molecule, nonpeptide agonist of the thrombopoietin receptor (TpoR), which is being developed as a treatment for thrombocytopenia of various etiologies. In vitro studies have demonstrated that the activity of eltrombopag is dependent on expression of TpoR, which activates the signaling transducers and activators of transcription (STAT) and mitogen-activated protein kinase signal transduction pathways. The objective of this preclinical study is to determine if eltrombopag interacts selectively with the TpoR to facilitate megakaryocyte differentiation in platelets. Functional thrombopoietic activity was demonstrated by the proliferation and differentiation of primary human CD34+ bone marrow cells into CD41+ megakaryocytes. Measurements in platelets in several species indicated that eltrombopag specifically activates only the human and chimpanzee STAT pathways. The in vivo activity of eltrombopag was demonstrated by an increase of up to 100% in platelet numbers when administered orally (10 mg/kg per day for 5 days) to chimpanzees. In conclusion, eltrombopag interacts selectively with the TpoR without competing with Tpo, leading to the increased proliferation and differentiation of human bone marrow progenitor cells into megakaryocytes and increased platelet production. These results suggest that eltrombopag and Tpo may be able to act additively to increase platelet production.
Key Points• We report a first-in-human dose-escalation study in relapsed/refractory B-cell malignancies with the potent BTK inhibitor ONO/GS-4059.• ONO/GS-4059 induced clinically durable responses in relapsed/refractory B-cell malignancies without significant toxicities.We report the results of a multicenter phase 1 dose-escalation study of the selective Bruton tyrosine kinase (BTK) inhibitor ONO/GS-4059 in 90 patients with relapsed/ refractory B-cell malignancies. There were 9 dose-escalation cohorts ranging from 20 mg to 600 mg once daily with twice-daily regimens of 240 mg and 300 mg. Twenty-four of 25 evaluable chronic lymphocytic leukemia (CLL) patients (96%) responded to ONO/GS-4059, with a median treatment duration of 80 weeks; 21 CLL patients remain on treatment. Lymph node responses were rapid and associated with a concurrent lymphocytosis. Eleven of 12 evaluable patients with mantle cell lymphoma (92%) responded (median treatment duration, 40 weeks). Eleven of 31 non-germinal center B-cell diffuse large B-cell lymphoma patients (35%) responded but median treatment duration was 12 weeks due to development of progressive disease. ONO/GS-4059 was very well tolerated with 75% of adverse events (AEs) being Common Toxicity Criteria for Adverse Events version 4.0 grade 1 or grade 2. Grade 3/4 AEs were mainly hematologic and recovered spontaneously during therapy. One CLL patient experienced a grade 3 treatment-related bleeding event (spontaneous muscle hematoma) but no clinically significant diarrhea, cardiac dysrhythmias, or arthralgia were observed. No maximal tolerated dose (MTD) was reached in the CLL cohort. In the non-Hodgkin lymphoma cohort, 4 patients developed a doselimiting toxicity, yielding an MTD of 480 mg once daily. ONO/GS-4059 has significant activity in relapsed/refractory B-cell malignancies without major drug-related toxicity. The selectivity of ONO/GS-4059 should confer advantages in combination therapies. This trial was registered at www.clinicaltrials.gov as #NCT01659255. (Blood. 2016;127(4):411-419)
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC 50 of ϳ0.5 M, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.Hepatitis C virus (HCV), 1 a positive strand RNA virus of the Flaviviridae family, is the major etiological agent of post-transfusion and sporadic non-A, non-B hepatitis (1). An estimated 2-3% of the world population is chronically infected with HCV, which causes significant liver disease, cirrhosis, and can eventually lead to the development of hepatocellular carcinoma. In infected cells, translation of the viral RNA yields a 3011-residue polyprotein chain (2-4), which is subsequently cleaved to generate envelope and core proteins, for assembly of new virus particles and nonstructural enzymes essential for viral replication (5-7). Studies using recombinant NS5B polymerase have provided direct evidence for RNA-dependent RNA polymerase activity (8, 9), and this catalytic activity has been confirmed to be required for infectivity in chimpanzees (10).NS5B polymerase contains a hydrophobic C-terminal domain thought to be responsible for anchoring the protein to mammalian cell membranes. Removal of the C-terminal 21 residues has been reported to facilitate protein isolation from Escherichia coli without compromising RdRp activity (11). The HCV RdRp initiates RNA synthesis preferentially from the 3Ј terminus of the template RNA (12, 13-15) but lacks specificity for HCV RNA in vitro, because it readily utilizes heterologous nonviral templates (8). Based on crystallographic studies of the enzyme containing C-terminal truncations (16, 17), the hydrophobic tail present in the full-length ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.