A detailed theoretical analysis of the thermodynamics and functional energetics of protein-DNA binding in the EcoRI endonuclease-DNA complex is presented. The standard free energy of complexation is considered in terms of a thermodynamic cycle of seven distinct steps decomposed into a total of 24 well-defined components. The model we employ involves explicit all-atom accounts of the energetics of structural adaptation of the protein and the DNA upon complex formation; the van der Waals and electrostatic interactions between the protein and the DNA; and the electrostatic polarization and screening effects, van der Waals components, and cavitation effects of solvation. The ion atmosphere of the DNA is described in terms of a counterion condensation model combined with a Debye-Huckel treatment of added salt effects. Estimates of entropy loss due to decreased translational and rotational degrees of freedom in the complex relative to the unbound species based on classical statistical mechanics are included, as well as corresponding changes in the vibrational and configurational entropy. The magnitudes and signs of the various components are estimated from the AMBER parm94 force field, generalized Born theory, solvent accessibility measures, and empirical estimates of quantities related to ion release.The calculated standard free energy of formation, −11.5 kcal/mol, agrees with experiment to within 5 kcal/mol. This net binding free energy is discerned to be the resultant of a balance of several competing contributions associated with chemical forces as conventionally defined, with 10 out of 24 terms favoring complexation. Contributions to binding compounded from subsets of the 24 components provide a basis for advancing a molecular perspective of binding in terms of structural adaptation, electrostatics, van der Waals interactions, hydrophobic effects, and small ion reorganization and release upon complexation. The van der Waals interactions and water release favor complexation, while electrostatic interactions, considering both intramolecular and solvation effects, prove unfavorable. Analysis of individual contributions to the standard free energy of complexation at the nucleotide and amino
Noncovalent association of proteins to specific target sites on DNA-a process central to gene expression and regulation-has thus far proven to be idiosyncratic and elusive to generalizations on the nature of the driving forces. The spate of structural information on protein-DNA complexes sets the stage for theoretical investigations on the molecular thermodynamics of binding aimed at identifying forces responsible for specific macromolecular recognition. Computation of absolute binding free energies for systems of this complexity transiting from structural information is a stupendous task. Adopting some recent progresses in treating atomic level interactions in proteins and nucleic acids including solvent and salt effects, we have put together an energy component methodology cast in a phenomenological mode and amenable to systematic improvements and developed a computational first atlas of the free energy contributors to binding in ∼40 protein-DNA complexes representing a variety of structural motifs and functions. Illustrating vividly the compensatory nature of the free energy components contributing to the energetics of recognition for attaining optimal binding, our results highlight unambiguously the roles played by packing, electrostatics including hydrogen bonds, ion and water release (cavitation) in protein-DNA binding. Cavitation and van der Waals contributions without exception favor complexation. The electrostatics is marginally unfavorable in a consensus view. Basic residues on the protein contribute favorably to binding despite the desolvation expense. The electrostatics arising from the acidic and neutral residues proves unfavorable to binding. An enveloping mode of binding to short stretches of DNA makes for a strong unfavorable net electrostatics but a highly favorable van der Waals and cavitation contribution. Thus, noncovalent protein-DNA association is a system-specific fine balancing act of these diverse competing forces. With the advances in computational methods as applied to macromolecular recognition, the challenge now seems to be to correlate the differential (initial vs. final) energetics to substituent effects in drug design and to move from affinity to specificity.
Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a collection of 88 629 articles relating over 1 200 pharmaceutical drugs to their potential involvement in cardiovascular, neurological, renal and hepatic toxicity. In 1 year, CTD biocurators curated 2 54 173 toxicogenomic interactions (1 52 173 chemical–disease, 58 572 chemical–gene, 5 345 gene–disease and 38 083 phenotype interactions). All chemical–gene–disease interactions are fully integrated with public CTD, and phenotype interactions can be downloaded. We describe Pfizer’s text-mining process to collate the articles, and CTD’s curation strategy, performance metrics, enhanced data content and new module to curate phenotype information. As well, we show how data integration can connect phenotypes to diseases. This curation can be leveraged for information about toxic endpoints important to drug safety and help develop testable hypotheses for drug–disease events. The availability of these detailed, contextualized, high-quality annotations curated from seven decades’ worth of the scientific literature should help facilitate new mechanistic screening assays for pharmaceutical compound survival. This unique partnership demonstrates the importance of resource sharing and collaboration between public and private entities and underscores the complementary needs of the environmental health science and pharmaceutical communities.Database URL: http://ctdbase.org/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.