There is growing interest in understanding and eliciting division of labor within groups of scientists. This paper illustrates the need for this division of labor through a historical example, and a formal model is presented to better analyze situations of this type. Analysis of this model reveals that a division of labor can be maintained in two different ways: by limiting information or by endowing the scientists with extreme beliefs. If both features are present however, cognitive diversity is maintained indefinitely, and as a result agents fail to converge to the truth. Beyond the mechanisms for creating diversity suggested here, this shows that the real epistemic goal is not diversity but transient diversity.A striking social feature of science is the extensive division of labor. Not only are different scientists pursuing different problems, but even those working on the same problem will pursue different solutions to that problem. This diversity is to be applauded because, in many circumstances one can simply not determine a priori if a general theoretical or methodological approach will succeed without first attempting to apply it, study the effects of its application, and develop additional auxiliary theories to assist in its application. 1 The value of diversity presents a problem for more traditional approaches to scientific methodology, since if everyone employs the same standards for induction and has access to the same information, we ought to expect them to all adopt the
Increasingly, epistemologists are becoming interested in social structures and their effect on epistemic enterprises, but little attention has been paid to the proper distribution of experimental results among scientists. This paper will analyze a model first suggested by two economists, which nicely captures one type of learning situation faced by scientists. The results of a computer simulation study of this model provide two interesting conclusions. First, in some contexts, a community of scientists is, as a whole, more reliable when its members are less aware of their colleagues’ experimental results. Second, there is a robust tradeoff between the reliability of a community and the speed with which it reaches a correct conclusion.
Costly signalling theory has become a common explanation for honest communication when interests conflict. In this paper, we provide an alternative explanation for partially honest communication that does not require significant signal costs. We show that this alternative is at least as plausible as traditional costly signalling, and we suggest a number of experiments that might be used to distinguish the two theories.
Those who comment on modern scientific institutions are often quick to praise institutional structures that leave scientists to their own devices. These comments reveal an underlying presumption that scientists do best when left alone-when they operate in what we call the 'scientific state of nature'. Through computer simulation, we challenge this presumption by illustrating an inefficiency that arises in the scientific state of nature. This inefficiency suggests that one cannot simply presume that science is most efficient when institutional control is absent. In some situations, actively encouraging unpopular, risky science would improve scientific outcomes.
We study the handicap principle in terms of the Sir Philip Sidney game. The handicap principle asserts that cost is required to allow for honest signalling in the face of conflicts of interest. We show that the significance of the handicap principle can be challenged from two new directions. Firstly, both the costly signalling equilibrium and certain states of no communication are stable under the replicator dynamics (i.e. standard evolutionary dynamics); however, the latter states are more likely in cases where honest signalling should apply. Secondly, we prove the existence and stability of polymorphisms where players mix between being honest and being deceptive and where signalling costs can be very low. Neither the polymorphisms nor the states of no communication are evolutionarily stable, but they turn out to be more important for standard evolutionary dynamics than the costly signalling equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.