The recent standardization by IEEE of Fine Timing Measurement (FTM), a time-of-flight based approach for ranging has the potential to be a turning point in bridging the gap between the rich literature on indoor localization and the so-far tepid market adoption. However, experiments with the first WiFi cards supporting FTM show that while it offers meter-level ranging in clear line-of-sight settings (LOS), its accuracy can collapse in non-line-of-sight (NLOS) scenarios. We present FUSIC, the first approach that extends FTM's LOS accuracy to NLOS settings, without requiring any changes to the standard. To accomplish this, FUSIC leverages the results from FTM and MUSIC-both erroneous in NLOS-into solving the double challenge of 1) detecting when FTM returns an inaccurate value and 2) correcting the errors as necessary. Experiments in 4 different physical locations reveal that a) FUSIC extends FTM's LOS ranging accuracy to NLOS settings-hence, achieving its stated goal; b) it significantly improves FTM's capability to offer room-level indoor positioning.
This paper addresses the problem of efficiently virtualizing NUMA architectures. The major challenge comes from the fact that the hypervisor regularly reconfigures the placement of a virtual machine (VM) over the NUMA topology. However, neither guest operating systems (OSes) nor system runtime libraries (e.g., HotSpot) are designed to consider NUMA topology changes at runtime, leading end user applications to unpredictable performance. This paper presents eXtended Para-Virtualization (XPV), a new principle to efficiently virtualize a NUMA architecture. XPV consists in revisiting the interface between the hypervisor and the guest OS, and between the guest OS and system runtime libraries (SRL) so that they can dynamically take into account NUMA topology changes. The paper presents a methodology for systematically adapting legacy hypervisors, OSes, and SRLs. We have applied our approach with less than 2k line of codes in two legacy hypervisors (Xen and KVM), two legacy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.