Line current differential (LCD) protection is traditionally considered to be highly dependable and secure. However, the increasing penetration of converter interfaced sources (CIS) (e.g. wind, PV, HVDC systems, etc.) could significantly reduce the system fault level and change the fault characteristics, thus presenting challenges to the reliable operation of LCD protection. In this paper, the impact of the integration of CIS on LCD performance is investigated comprehensively. Analytical expressions representing LCD relay operation in the presence of converter-driven fault currents and weak infeed conditions have been developed. A test network, comprising of a CIS model equipped with a typical converter fault-ride through strategy that is compliant with the GB Grid Code, has been built in a Real-Time Digital Simulator (RTDS). Simulations of LCD performance for different fault and system conditions are performed and presented. It is demonstrated that the dependability of the LCD relay can be compromised during internal phase-to-phase faults. The results also show that with the synchronous generation being displaced by CIS, the increasing CIS penetration and fault contribution from the CIS can lead to an increased phase angle difference between the fault currents contributed from the two ends of the protected line, which will increase the risk of the compromised protection performance.
Environmental concerns and economic constraints have led to increasing installations of mixed conductor circuits comprising underground cables (UGCs) and overhead transmission lines (OHLs). Faults on the OHL sections of such circuits are usually temporary, while there is a higher probability that faults on UGC sections are permanent. To maintain power system reliability and security, auto-reclose (AR) schemes are typically implemented to minimize outage duration after temporary OHL faults while blocking AR for UGC faults to prevent equipment damage. AR of a hybrid UCG–OHL transmission line, therefore, requires effective identification of the faulty section. However, the different electrical characteristics of UGC and OHL sections present significant challenges to existing protection and fault location methods. This paper presents a selective AR scheme for mixed conductor circuits based on the evaluation of differential currents in multiple defined protection zones, using distributed current transformer (CT) measurements provided by passive optical sensing. Case studies are conducted with a number of different UGC–OHL configurations, and the results demonstrate that the proposed scheme can accurately identify the faulty section, enabling effective selective AR of a comprehensive range of mixed conductor circuit topologies. The proposed scheme is also more cost effective, with reduced hardware requirements compared to conventional solutions. This paper thereby validates the optimal solution for mixed circuit protection as described in CIGRE Working Group B5.23 report 587.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.