Using electrically connected metal‐coated posts in a deterministic lateral displacement (DLD) device and applying electric fields, electrokinetics is used to tune separations, significantly decrease the critical size for separation, and increase the dynamic range with switching times on the order of seconds. The strength of DLD stems from its binary behavior. To first approximation, particles move in one out of two trajectories based on their effective size. For particles that are close to the threshold size, a small external force is sufficient to nudge the particles from one trajectory to another. The devices consist of arrays of cylindrical metal‐coated SU‐8 posts connected by an underlying metal layer. This allows the application of voltages at the post surfaces and the generation of electric field gradients between neighboring posts, causing polarizable particles to experience a dielectrophoretic (DEP) force. This force, which depends on the volume and polarizability of the particle, can be made sufficient to push particles from one trajectory into another. In this way, the critical size in a device, normally fixed by the geometry, can be tuned. What's more, adding DEP in this way allows for the simultaneous creation of multiple size fractions.
This paper reports a method for label‐free single‐cell biophysical analysis of multiple cells trapped in suspension by electrokinetic forces. Tri‐dimensional pillar electrodes arranged along the width of a microfluidic chamber define actuators for single cell trapping and selective release by electrokinetic force. Moreover, a rotation can be induced on the cell in combination with a negative DEP force to retain the cell against the flow. The measurement of the rotation speed of the cell as a function of the electric field frequency define an electrorotation spectrum that allows to study the dielectric properties of the cell. The system presented here shows for the first time the simultaneous electrorotation analysis of multiple single cells in separate micro cages that can be selectively addressed to trap and/or release the cells. Chips with 39 micro‐actuators of different interelectrode distance were fabricated to study cells with different sizes. The extracted dielectric properties of Henrietta Lacks, human embryonic kidney 293, and human immortalized T lymphocytes cells were found in agreements with previous findings. Moreover, the membrane capacitance of M17 neuroblastoma cells was investigated and found to fall in in the range of 7.49 ± 0.39 mF/m2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.