A turbulent boundary layer developed over a herringbone patterned riblet surface is investigated using stereoscopic particle image velocimetry in the cross-stream plane at $Re_{\unicode[STIX]{x1D70F}}\approx 3900$. The three velocity components resulting from this experiment reveal a pronounced spanwise periodicity in all single-point velocity statistics. Consistent with previous hot-wire studies over similar-type riblets, we observe a weak time-average secondary flow in the form of $\unicode[STIX]{x1D6FF}$-filling streamwise vortices. The observed differences in the surface and secondary flow characteristics, compared to other heterogeneous-roughness studies, may suggest that different mechanisms are responsible for the flow modifications in this case. Observations of instantaneous velocity fields reveal modified and rearranged turbulence structures. The instantaneous snapshots also suggest that the time-average secondary flow may be an artefact arising from superpositions of much stronger instantaneous turbulent events enhanced by the surface texture. In addition, the observed instantaneous secondary motions seem to have promoted a free-stream-engulfing behaviour in the outer layer, which would indicate an increase turbulent/non-turbulent flow mixing. It is overall demonstrated that the presence of large-scale directionality in transitional surface roughness can cause a modification throughout the entire boundary layer, even when the roughness height is 0.5 % of the layer thickness.
This paper quantifies the instantaneous form of large-scale turbulent structures in canonical smooth-wall boundary layers, demonstrating that they adhere to a form that is consistent with the self-sustaining streak instability model suggested by Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704) and Hwang & Cossu (Phys. Fluids, vol. 23, 2011, 061702). Our motivation for this study stems from previous observations of large-scale streaks that have been spatially locked in position within spanwise-heterogeneous boundary layers. Here, using similar tools, we demonstrate that the randomly occurring large-scale structures in canonical layers show similar behaviour. Statistically, we show that the signature of large-scale coherent structures exhibits increasing meandering behaviour with distance from the wall. At the upper edge of the boundary layer, where these structures are severely misaligned from the main-flow direction, the induced velocities associated with the strongly yawed vortex packets/clusters yield a significant spanwise-velocity component leading to an apparent oblique coherence of spanwise-velocity fluctuations. This pronounced meandering behaviour also gives rise to a dominant streamwise periodicity at a wavelength of approximately $6\unicode[STIX]{x1D6FF}$. We further statistically show that the quasi-streamwise roll-modes formed adjacent to these very large wavy motions are often one-sided (spanwise asymmetric), in stark contrast to the counter-rotating form suggested by conventional conditionally averaged representations. To summarise, we sketch a representative picture of the typical large-scale structures based on the evidence gathered in this study.
We investigate the behaviour of large-scale coherent structures in a spanwise-heterogeneous turbulent boundary layer, using particle image velocimetry on multiple orthogonal planes. The statistical three-dimensionality is imposed by a herringbone riblet surface, although the key results presented here will be common to many cases of wall turbulence with embedded secondary flows in the form of mean streamwise vortices. Instantaneous velocity fields in the logarithmic layer reveal elongated low-momentum streaks located over the upwash-flow region, where their spanwise spacing is forced by the $2\unicode[STIX]{x1D6FF}$ periodicity of the herringbone pattern. These streaks largely resemble the turbulence structures that occur naturally (and randomly located) in spanwise-homogeneous smooth-/rough-wall boundary layers, although here they are directly formed by the roughness pattern. In the far outer region, the large spanwise spacing permits the streaks to aggressively meander. The mean secondary flows are the time-averaged artefact of the unsteady and spanwise asymmetric large-scale roll modes that accompany these meandering streaks. Interestingly, this meandering, or instability, gives rise to a pronounced streamwise periodicity (i.e. an alternating coherent pattern) in the spatial statistics, at wavelengths of approximately 4.5$\unicode[STIX]{x1D6FF}$. Overall, the observed behaviours largely resemble the streak-instability model that has been proposed for the buffer region, only here at a much larger scale and at a forced spanwise spacing. This observation further confirms recent observations that such features may occur at an entire hierarchy of scales throughout the turbulent boundary layer.
The spatial signature of spanwise velocity coherence in turbulent boundary layers has been studied using a series of unique large-field-of-view multicamera particle image velocimetry experiments, which were configured to capture streamwise/spanwise slices of the boundary layer in both the logarithmic and the wake regions. The friction Reynolds number of $Re_{\unicode[STIX]{x1D70F}}\approx 2600$ was chosen to nominally match the simulation of Sillero et al. (Phys. Fluids, vol. 26 (10), 2014, 105109), who had previously reported oblique features of the spanwise coherence at the top edge of the boundary layer based on the sign of the spanwise velocity, and here we find consistent observations from experiments. In this work, we show that these oblique features in the spanwise coherence relate to the intermittent turbulent bulges at the edge of the layer, and thus the geometry of the turbulent/non-turbulent interface, with the clear appearance of two counter-oriented oblique features. Further, these features are shown to be also present in the logarithmic region once the velocity fields are deconstructed based on the sign of both the spanwise and the streamwise velocity, suggesting that the often-reported meandering of the streamwise-velocity coherence in the logarithmic region is associated with a more obvious diagonal pattern in the spanwise velocity coherence. Moreover, even though a purely visual inspection of the obliqueness in the spanwise coherence may suggest that it extends over a very large spatial extent (beyond many boundary layer thicknesses), through a conditional analysis, we show that this coherence is limited to distances nominally less than two boundary layer thicknesses. Interpretation of these findings is aided by employing synthetic velocity fields of a boundary layer constructed using the attached eddy model, where the range of eddy sizes can be prescribed. Comparisons between the model, which employs an array of self-similar packet-like eddies that are randomly distributed over the plane of the wall, and the experimental velocity fields reveal a good degree of agreement, with both exhibiting oblique features in the spanwise coherence over comparable spatial extents. These findings suggest that the oblique features in the spanwise coherence are likely to be associated with similar structures to those used in the model, providing one possible underpinning structural composition that leads to this behaviour. Further, these features appear to be limited in spatial extent to only the order of the large-scale motions in the flow.
Objective To study the airflow, transmission and clearance of aerosols in the clinical spaces of a hospital ward that had been used to care for patients with COVID-19, and to examine the impact of portable air cleaners on aerosol clearance. Design Observational study. Setting A single ward of a tertiary public hospital in Melbourne Australia. Intervention Glycerine-based aerosol was used as a surrogate for respiratory aerosols. The transmission of aerosols from a single patient room into corridors and a nurses’ station in the ward was measured. The rate of clearance of aerosols was measured over time from the patient room, nurses’ station and ward corridors with and without air cleaners (also called portable HEPA filters). Results Aerosols rapidly travelled from the patient room into other parts of the ward. Air cleaners were effective in increasing the clearance of aerosols from the air in clinical spaces and reducing their spread to other areas. With two small domestic air cleaners in a single patient room of a hospital ward, 99% of aerosols could be cleared within 5.5 minutes. Conclusion Air cleaners may be useful in clinical spaces to help reduce the risk of healthcare acquired acquisition of respiratory viruses that are transmitted via aerosols. They are easy to deploy and are likely to be cost effective in a variety of healthcare settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.