In a study at a military range with the objective to discriminate potentially hazardous 4.2-inch mortars from nonhazardous shrapnel, range, and cultural debris, six different discrimination techniques were tested using data from an array of magnetometers, a time-domain electromagnetic induction ͑EMI͒ cart, an array of time-domain sensors, and a time-domain EMI cart with a wider measurement bandwidth. Discrimination was achieved using rule-based or statistical classification of feature vectors extracted from dipole or polarization tensor models fit to detected anomalies. For magnetics, the ranking by moment yielded better discrimination results than that of apparent remanence from relatively large remanent magnetizations of several of the seeded items. The magnetometer results produced very accurate depths and fewer failed fits attributable to noisy data or model insuffi-ciency. The EMI-based methods were more effective than the magnetometer for intrinsic discrimination ability. The higher signal-to-noise ratio, denser coverage, and more precise positioning of the EM-array data resulted in fewer false positives than the EMI cart. When depth constraints from the magnetometer data were used to constrain the EMI fits through cooperative inversion, discrimination performance improved considerably. The wide-band EMI sensor was deployed in a cued-interrogation mode over a subset of anomalies. This produced the highestquality data because of collecting the densest data around each target and the additional late time-decay information available with the wide-band sensor. When the depth from the magnetometer was used as a constraint in the cooperative inversion process, all 4.2-inch mortars were recovered before any false positives were encountered.
We have developed practical strategies for discriminating between buried unexploded ordnance (UXO) and metallic clutter. These methods are applicable to time-domain electromagnetic data acquired with multistatic, multicomponent sensors designed for UXO classification. Each detected target is characterized by dipole polarizabilities estimated via inversion of the observed sensor data. The polarizabilities are intrinsic target features and so are used to distinguish between UXO and clutter. We tested this processing with four data sets from recent field demonstrations, with each data set characterized by metrics of data and model quality. We then developed techniques for building a representative training data set and determined how the variable quality of estimated features affects overall classification performance. Finally, we devised a technique to optimize classification performance by adapting features during target prioritization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.