Methane (CH4) emission traits were previously found to be heritable and repeatable in sheep fed alfalfa pellets in respiration chambers (RC). More rapid screening methods are, however, required to increase genetic progress and to provide a cost-effective method to the farming industry for maintaining the generation of breeding values in the future. The objective of the current study was to determine CH4 and carbon dioxide (CO2) emissions using several 1-h portable accumulation chamber (PAC) measurements from lambs and again as ewes while grazing ryegrass-based pasture. Many animals with PAC measurements were also measured in RC while fed alfalfa pellets at 2.0 × maintenance metabolizable energy requirements (MEm). Heritability estimates from mixed models for CH4 and CO2 production (g/d) were 0.19 and 0.16, respectively, when measured using PAC with lambs; 0.20 and 0.27, respectively, when measured using PAC with ewes; and 0.23 and 0.34, respectively, when measured using RC with lambs. For measured gas traits, repeatabilities of measurements collected 14 d apart ranged from 0.33 to 0.55 for PAC (combined lambs and ewes) and were greater at 0.65 to 0.76 for the same traits measured using RC. Genetic correlations (rg) between PAC in lambs and ewes were 0.99 for CH4, 0.93 for CH4 + CO2, and 0.85 for CH4/(CH4 + CO2), suggesting that CH4 emissions in lambs and ewes are the same trait. Genetic correlations between PAC and RC measurements were lower, at 0.62 to 0.67 for CH4 and 0.41 to 0.42 for CH4 + CO2, likely reflecting different environmental conditions associated with the protocols used with the 2 measurement methods. The CH4/(CH4 + CO2) ratio was the most similar genetic trait measured using PAC (both lambs and ewes, 63% and 66% selection efficiency, respectively) compared with CH4 yield (g/kg DMI) measured using RC. These results suggest that PAC measurements have considerable value as a rapid low-cost method to estimate breeding values for CH4 emissions in sheep.
Background: Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes.
Livestock breeding programmes have created resistant (R) and susceptible (S) sheep that differ in their ability to control parasites through their immune function but potentially also their grazing behaviour (i.e. parasite avoidance). Using the Perendale genetic lines, we tested the hypothesis that R-sheep avoid parasites more effectively, reducing their parasite exposure/challenge, compared with S-sheep. However, in grazing systems, parasite-rich areas are also forage rich, suggesting that parasite avoidance behaviours are associated with nutritional penalties. We first created a naturally heterogeneous sward structure of gaps and tussocks and then used focal behavioural observations to quantify the sward selection of R- and S-sheep. Tussock swards were more nitrogen rich (41%), offered increased forage intake rates (32%) and contained 17 times more parasite larvae than gap swards. All the animals avoided grazing the tussock swards. However, the R-sheep grazed the tussock swards to a lesser degree than the S-sheep. We conclude that selection for genetic resistance has resulted in animals that, despite being well armed to fight parasitism through improved immune function, adopt parasite avoidance strategies with associated nutritional disadvantages. This experiment highlights the role of host behaviour in the control of parasitism and suggests that animals can be bred to avoid disease.
There is simultaneous interest in improving the feed efficiency of ruminant livestock and reducing methane (CH4) emissions. The relationship (genetic and phenotypic) between feed efficiency (characterized as residual feed intake: RFI) and greenhouse gases [methane (CH4) and carbon dioxide (CO2)] traits in New Zealand (NZ) maternal sheep has not previously been investigated, nor has their relationship with detailed estimates of body composition. To investigate these relationships in NZ maternal sheep, a feed intake facility was established at AgResearch Invermay, Mosgiel, NZ in 2015, comprising automated feeders that record individual feeding events. Individual measures of feed intake, feeding behavior (length and duration of eating events), and gas emissions (estimated using portable accumulation chambers) were generated on 986 growing maternal ewe lambs sourced from three pedigree recorded flocks registered in the Sheep Improvement Limited database (www.sil.co.nz). Additional data were generated from a subset of 591 animals for body composition (estimated using ultrasound and computed tomography scanning). The heritability estimates for RFI, CH4, and CH4/(CH4+CO2) were 0.42 ± 0.09, 0.32 ± 0.08, and 0.29 ± 0.06, respectively. The heritability estimates for the body composition traits were high for carcass lean and fat traits; for example, the heritability for visceral fat (adjusted for body weight) was 0.93 ± 0.19. The relationship between RFI and CH4 emissions was complex, and although less feed eaten will lead to a lowered absolute amount of CH4 emitted, there was a negative phenotypic and genetic correlation between RFI and CH4/(CH4+CO2) of −0.13 ± 0.03 and −0.41 ± 0.15, respectively. There were also genetic correlations, that were different from zero, between both RFI and CH4 traits with body composition including a negative correlation between the proportion of visceral fat in the body and RFI (−0.52 ± 0.16) and a positive correlation between the proportion of lean in the body and CH4 (0.54 ± 0.12). Together the results provide the first accurate estimates of the genetic correlations between RFI, CH4 emissions, and the body composition (lean and fat) in sheep. These correlations will need to be accounted for in genetic improvement programs.
Animal-to-animal variation in methane (CH4) emissions determined in respiration chambers has a genetic basis, but rapid phenotyping methods that can be applied on-farm are required to enable increased genetic progress by the farming industry. Fermentation of carbohydrates in the rumen results in the formation of VFA with hydrogen (H2) as a byproduct that is used for CH4 formation. Generally, fermentation pathways leading to acetate are associated with the most H2 production, less H2 formation is associated with butyrate production, and propionate and valerate production are associated with reduced H2 production. Therefore, VFA may constitute a potential correlated proxy for CH4 emissions to enable high-throughput animal screening. The objective of the present study was to determine the genetic parameters for ruminal and plasma VFA concentrations in sheep fed alfalfa (Medicago sativa L.) pellets and their genetic (rg) and phenotypic (rp) correlations with CH4 emissions. Measurements of CH4 emissions in respiration chambers and ruminal (stomach tubing 18 h from last meal) and blood plasma (3 h post-feeding) VFA concentrations were made on 1,538 lambs from 5 birth years (2007 and 2009 to 2012) aged between 5 and 10 mo, while the animals were fed alfalfa pellets at 2.0 times maintenance requirements in 2 equal size meals (0900 and 1500 h). These measurements were repeated twice (rounds) 14 d apart. Mean (± SD) CH4 production was 24.4 ± 3.08 g/d, and the mean CH4 yield was 15.8 ± 1.51 g/kg DMI. Mean concentration of total ruminal VFA was 52.2 mM, with concentrations of acetate, propionate and butyrate of 35.97, 8.83, and 4.02 mM, respectively. Ruminal total VFA concentration had heritability (h2) and repeatability estimates (± SE) of 0.24 ± 0.05 and 0.35 ± 0.03, respectively, and similar estimates were found for acetate, propionate, and butyrate. Blood plasma concentrations of VFA had much lower estimates of h2 and repeatability than ruminal VFA. Genetic correlations with CH4 yield were greatest for total concentrations of ruminal VFA and acetate, with 0.54 ± 0.12 and 0.56 ± 0.12, respectively, which were much greater than their corresponding rp. The rp and rg of ruminal VFA proportions and blood VFAs with CH4 emissions were in general lower than for ruminal VFA concentrations. However, minor ruminal VFA proportions had also moderate rg with CH4 yield. Pre-feeding concentrations of total VFA and acetate were the strongest correlated proxies to select sheep that are genetically low CH4 emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.