Long-term, accurate observations of atmospheric phenomena are essential for a myriad of applications, including historic and future climate assessments, resource management, and infrastructure planning. In Hawai‘i, climate data are available from individual researchers, local, State, and Federal agencies, and from large electronic repositories such as the National Centers for Environmental Information (NCEI). Researchers attempting to make use of available data are faced with a series of challenges that include: (1) identifying potential data sources; (2) acquiring data; (3) establishing data quality assurance and quality control (QA/QC) protocols; and (4) implementing robust gap filling techniques. This paper addresses these challenges by providing: (1) a summary of the available climate data in Hawai‘i including a detailed description of the various meteorological observation networks and data accessibility, and (2) a quality controlled meteorological dataset across the Hawaiian Islands for the 25-year period 1990-2014. The dataset draws on observations from 471 climate stations and includes rainfall, maximum and minimum surface air temperature, relative humidity, wind speed, downward shortwave and longwave radiation data.
The purpose of this study was to determine whether anatomic differences in the tympanic membranes of various species could explain differences in the propensity to form aural cholesteatomas and retraction pockets. Tympanic membranes from humans, dogs, cats, rabbits, guinea pigs, rats, gerbils, and mice were examined histologically. The pars flaccida and pars tensa varied greatly among the species studied. The guinea pig's pars flaccida was very small and had a thin lamina propria. In contrast, the lamina propria of the rabbit and cat pars flaccida were thick. The amount of collagen, elastin, mast cells, and macrophages varied widely. The human and gerbilline tympanic membranes were anatomically dissimilar; for example, the human pars flaccida and pars tensa contained more and denser collagen than did those of the gerbil. The presence of macrophages or mast cells did not correlate with the propensity to develop cholesteatomas. Therefore, anatomic differences among these species do not explain why some develop aural cholesteatomas and others do not.
Validations of the 10-km operational Regional Spectral Model (RSM) and the coupled Mesoscale Spectral Model (MSM) with an advanced land surface model (LSM) forecasts during a 1-month period from 20 May through 20 June 2002 are performed at three surface sites on the island of Oahu. One heavy rainfall case over the Hawaiian Islands is also simulated using the MSM–LSM. Over land with adequate representation of the terrain, the 1.5-km MSM provides better forecasts of surface variables than the 10-km operational RSM. However, there are still appreciable discrepancies between the MSM simulations and observations. Further improvements are achieved by coupling the MSM with the LSM. In particular, overestimation of the surface wind speed and daytime cold biases experienced by the MSM are largely corrected in the coupled MSM–LSM.
Composite analyses of surface variables at three surface sites under different trade wind conditions show that the observed diurnal cycles in 2-m temperature, 2-m dewpoint temperature, and 10-m wind are better forecasted by the MSM–LSM than by the MSM. The observed daytime minima in 2-m dewpoint temperatures during the strong trade wind days at two urban sites are reproduced by the MSM–LSM. The heavy rainfall case studies presented herein indicate that the high-resolution MSM–LSM has better capability in simulating localized rainfall distributions and airflows associated with the heavy rainfall event than the 10-km RSM–LSM. A major model bias is that the MSM–LSM produces excessive rainfall on the windward side of the island of Oahu with no rainfall downstream of the mountain ridges, in contrast to the observed rainfall distribution that shows the maximum rainfall axis occurring slightly downstream of the mountain ridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.