Lithium-mediated nitrogen reduction is a proven method to electrochemically synthesize ammonia; yet the process has so far been unstable, and the continuous deposition of lithium limits its practical applicability. One...
Boosting ammonia with a little oxygen
Ammonia synthesis from nitrogen for fertilizer production is highly energy intensive. Chemists are therefore exploring electrochemical approaches that could draw power from renewable sources while generating less waste. One promising cycle involves the reduction of lithium ions at an electrode, with the resultant metal in turn reducing nitrogen and regenerating the ions. Li
et al
. report the counterintuitive result that small quantities of oxygen could enhance the efficiency of this process, which they attribute to diffusional effects that limit excessive lithium reduction. —JSY
Development of low-cost and high-performance oxygen evolution reaction catalysts is keyto implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridiumbased oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA g Ir -1 and a turnover frequency of 2.3 ± 0.9 s -1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.Water electrolysis (2H2O → 2H2 + O2) driven by renewable power sources (for example, solar and wind) offers a sustainable strategy to store energy in the form of hydrogen fuel 1,2 . The polymer electrolyte membrane water electrolyzer (PEM-WE) operating in acidic media serves as a promising technology for such energy conversion and is preferable to alkaline conditions for hydrogen production because of its high current density, fast response, stable operation performance and low cross-over under pressurized
The lithium-mediated ammonia synthesis is so far the only proven electrochemical way to produce ammonia with promising faradaic efficiencies (FEs). However, to make this process commercially competitive, the ammonia formation rates per geometric surface area need to be increased significantly. In this study, we increased the current density by synthesizing high surface area Cu electrodes through hydrogen bubbling templating (HBT) on Ni foam substrates. With these electrodes, we achieved high ammonia formation rates of 46.0 ± 6.8 nmol s −1 cm geo −2 , at a current density of −100 mA/cm geo −2 at 20 bar nitrogen atmosphere and comparable cell potentials to flat foil electrodes. The FE and energy efficiency (EE) under these conditions were 13.3 ± 2.0% and 2.3 ± 0.3%, respectively. Additionally, we found that increasing the electrolyte salt concentration improves the stability of the system, which is attributed to a change of Li deposition and/or solid electrolyte interphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.