In anaerobic bacteria, most aromatic growth substrates are channelled into the benzoyl-coenzyme A (CoA) degradation pathway where the aromatic ring is dearomatized and cleaved into an aliphatic thiol ester. The initial step of this pathway is catalysed by dearomatizing benzoyl-CoA reductases yielding the two electron-reduction product, cyclohexa-1,5-diene-1-carbonyl-CoA, to which water is subsequently added by a hydratase. The next two steps have so far only been studied in facultative anaerobes and comprise the oxidation of the 6-hydroxyl-group to 6-oxocyclohex-1-ene-1-carbonyl-CoA (6-OCH-CoA), the addition of water and hydrolytic ring cleavage yielding 3-hydroxypimelyl-CoA. In this work, two benzoate-induced genes from the obligately anaerobic bacteria, Geobacter metallireducens (bamA(Geo)) and Syntrophus aciditrophicus (bamA(Syn)), were heterologously expressed in Escherichia coli, purified and characterized as 6-OCH-CoA hydrolases. Both enzymes consisted of a single 43 kDa subunit. Some properties of the enzymes are presented and compared with homologues from facultative anaerobes. An alignment of the nucleotide sequences of bamA(Geo) and bamA(Syn) with the corresponding genes from facultative anaerobes identified highly conserved DNA regions, which enabled the discrimination of genes coding for 6-OCH-CoA hydrolases from those coding for related enzymes. A degenerate oligonucleotide primer pair was deduced from conserved regions and applied in polymerase chain reaction reactions. Using these primers, the expected DNA fragment of the 6-OCH-CoA hydrolase genes was specifically amplified from the DNA of nearly all known facultative and obligate anaerobes that use aromatic growth substrates. The only exception was the aromatic compound-degrading Rhodopseudomonas palustris, which uniquely uses a modified benzoyl-CoA degradation pathway. Using the oligonucleotide primers, the expected DNA fragment was also amplified in a toluene-degrading and a m-xylene-degrading enrichment culture demonstrating its potential use in less defined bacterial communities. The gene probe established in this work provides for the first time a general tool for the detection of a central functionality in aromatic compound-degrading anaerobes.
Benzoyl-coenzyme A (CoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds and catalyse the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-dienoyl-1-carboxyl-CoA. Class I BCRs are ATP-dependent FeS enzymes, whereas class II BCRs are supposed to be ATP-independent and contain W, FeS clusters, and most probably selenocysteine. The active site components of a putative eight subunit class II BCR, BamBCDEFGHI, were recently characterized in Geobacter metallireducens. In this organism bamB was identified as structural gene for the W-containing active site subunit; bamF was predicted to code for a selenocysteine containing electron transfer subunit. In this work the occurrence and expression of BCRs in a number of anaerobic, aromatic compound degrading model microorganisms was investigated with a focus on the BamB and BamF components. Benzoate-induced class II BCR in vitro activities were determined in the soluble protein fraction in all obligately anaerobic bacteria tested. Where applicable, the results were in agreement with Western blot analysis using BamB targeting antibodies. By establishing a specific bamB targeting PCR assay, bamB homologues were identified in all tested obligately anaerobic bacteria with the capacity to degrade aromatic compounds; a number of bamB sequences from Gram-negative/positive sulfate-reducing bacteria were newly sequenced. In several organisms at least two bamB paralogues per genome were identified; however, in nearly all cases only one of them was transcribed during growth on an aromatic substrate. These benzoate-induced bamB genes are proposed to code for the active site subunit of class II BCRs; the major part of them group into a phylogenetic subcluster within the bamB homologues. Results from in silico analysis suggested that all class II BCRs contain selenocysteine in the BamF, and in many cases also in the BamE subunit. The results obtained indicate that the distribution of the two classes of BCRs in anaerobic bacteria appears to be strictly ruled by the available free energy from the oxidation of the aromatic carbon source rather than by phylogenetic relationships.
The present study investigated dual carbon-bromine isotope fractionation of the common groundwater contaminant ethylene dibromide (EDB) during chemical and biological transformations, including aerobic and anaerobic biodegradation, alkaline hydrolysis, Fenton-like degradation, debromination by Zn(0) and reduced corrinoids. Significantly different correlation of carbon and bromine isotope fractionation (ΛC/Br) was observed not only for the processes following different transformation pathways, but also for abiotic and biotic processes with, the presumed, same formal chemical degradation mechanism. The studied processes resulted in a wide range of ΛC/Br values: ΛC/Br = 30.1 was observed for hydrolysis of EDB in alkaline solution; ΛC/Br between 4.2 and 5.3 were determined for dibromoelimination pathway with reduced corrinoids and Zn(0) particles; EDB biodegradation by Ancylobacter aquaticus and Sulfurospirillum multivorans resulted in ΛC/Br = 10.7 and 2.4, respectively; Fenton-like degradation resulted in carbon isotope fractionation only, leading to ΛC/Br ∞. Calculated carbon apparent kinetic isotope effects ((13)C-AKIE) fell with 1.005 to 1.035 within expected ranges according to the theoretical KIE, however, biotic transformations resulted in weaker carbon isotope effects than respective abiotic transformations. Relatively large bromine isotope effects with (81)Br-AKIE of 1.0012-1.002 and 1.0021-1.004 were observed for nucleophilic substitution and dibromoelimination, respectively, and reveal so far underestimated strong bromine isotope effects.
SummaryOrganohalides are environmentally relevant compounds that can be degraded by aerobic and anaerobic microorganisms. The denitrifying Thauera chlorobenzoica is capable of degrading halobenzoates as sole carbon and energy source under anaerobic conditions. LC-MS/MS-based coenzyme A (CoA) thioester analysis revealed that 3-chloro-or 3-bromobenzoate were preferentially metabolized via non-halogenated CoA-ester intermediates of the benzoyl-CoA degradation pathway. In contrast, 3-fluorobenzoate, which does not support growth, was converted to dearomatized fluorinated CoA ester dead-end products. Extracts from cells grown on 3-chloro-/3-bromobenzoate catalysed the Ti(III)-citrate-and ATP-dependent reductive dehalogenation of 3-chloro/3-bromobenzoyl-CoA to benzoyl-CoA, whereas 3-fluorobenzoyl-CoA was converted to a fluorinated cyclic dienoyl-CoA compound. The reductive dehalogenation reactions were identified as previously unknown activities of ATP-dependent class I benzoyl-CoA reductases (BCR) present in all facultatively anaerobic, aromatic compound degrading bacteria. A two-step dearomatization/H-halide elimination mechanism is proposed. A halobenzoate-specific carboxylic acid CoA ligase was characterized in T. chlorobenzoica; however, no such enzyme is present in Thauera aromatica, which cannot grow on halobenzoates. In conclusion, it appears that the presence of a halobenzoate-specific carboxylic acid CoA ligase rather than a specific reductive dehalogenase governs whether an aromatic compound degrading anaerobe is capable of metabolizing halobenzoates.
To explore the reliability of assays that detect aromatic-compound-degrading anaerobes, a combination of three functional-gene-targeting assays was applied to microcosms from benzene-contaminated aquifers. Results of the assays were consistent and suggest that species related to the generaAzoarcusandGeobacterdominated benzene degradation at the individual sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.