Ionic liquids (ILs) are considered a potential candidate for a heat transfer fluid (HTF) in concentrated solar power (CSP) applications. There are already many CSP sites in operation throughout the world. These complex energy systems use various subsystems such as mirrors and lenses to concentrate solar energy onto a central collector. These CSP sites rely on having a stable HTF in order to maintain high energy storage capacity and to reduce costs. This research seeks to develop a robust set of workable data that can be used to better understand the nanoparticles shape effect on viscosity and thermal conductivity of ionic liquids (ILs) based nanofluids. ILs based nanofluids were prepared by pouring 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C4mim][NTf2]) base IL and Al2O3 nanoparticles. Three different particle shapes (platelets, blades, and spherical) were used to prepare the 1 wt% ILs based nanofluids. Experimental results shows that the needleshaped nanoparticle provided the greatest effective thermal conductivity compared to the base ILs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.