Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.
Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them. Adv. Nutr. 5: 71-81, 2014.
Perturbations in methyl group metabolism and homocysteine balance have emerged over the past few decades as having defining roles in a number of pathological conditions. Numerous nutritional, hormonal, and genetic factors that are characterized by elevations in circulating homocysteine concentrations are also associated with specific pathological conditions, including cancer development, autoimmune diseases, vascular dysfunction, and neurodegenerative disease. Although much remains to be explored, our understanding of the relationship between disease, methyl balance, and epigenetic control of gene expression has steadily progressed. However, homocysteine balance and its role in health and disease are not as clearly understood. This review presents our current understanding of homocysteine metabolism and its link to specific pathologies.
Iron regulatory protein 1 (IRP1) and IRP2 are cytoplasmic RNA binding proteins that coordinate cellular iron homeostasis in mammals. We investigated the effect of dietary iron intake on rat liver IRP activity in relation to the abundance of two targets of IRP action, ferritin and mitochondrial aconitase (m-aconitase). Rats were fed diets containing 2, 11, 20, 37 (control), 72 or 107 mg iron/kg diet for 3 wk. RNA binding activity of IRP1 and IRP2 was enhanced one- to twofold in rats fed 11 or 2 mg iron/kg diet compared with control rats. IRP RNA binding activity was inversely correlated to blood hemoglobin levels (r = -0.787; P < 0.0001). Compared with control rats, liver ferritin levels were depressed in rats fed 20 mg iron/kg diet and were undetectable in rats ingesting diets with 11 or 2 mg iron/kg diet. Ferritin concentrations were biphasically related to IRP RNA binding activity with the regulation of IRP occurring before the onset of ferritin accumulation. Iron deficiency caused up to a 50% decline in m-aconitase abundance. IRP RNA binding activity and m-aconitase abundance were inversely correlated (r = -0.751; P < 0.0001). Our results indicate that (1) liver IRP activity is responsive to a range of dietary iron levels, (2) there appears to be a differential effect of IRPs on ferritin and m-aconitase abundance, and (3) activation of IRPs may contribute to the alterations in energy metabolism in iron deficiency through an impairment of m-aconitase synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.