A novel microfluidic chromatography device coupled with tandem mass spectrometry (LC–MS/MS) was utilized for the multiplex analysis of 5 steroids (testosterone, dihydrotestosterone, progesterone, cortisol, cortisone) in human serum. The use of microfluidics allowed for reduction of the chromatographic flow rate to 3 μl/min with overall method run times comparable to standard flow LC–MS/MS methods reported in the literature, corresponding to a 150 fold decrease in solvent consumption. Furthermore, a simple sample preparation protocol was employed requiring injection of only 0.5 μl of sample, corresponding to a 100–400 fold increase in on-column sensitivity as compared to published standard flow assays. The measured LOQ for both testosterone and progesterone was 0.4 ng/mL, representing an improvement over reported literature values obtained by standard flow methods employing comparable sample preparation and large injection volumes. The LOQs for cortisol (1.9 ng/mL), cortisone (0.3 ng/mL), and dihydrotestosterone (1.4 ng/mL) were all within a biologically relevant range. A comparison of clinical serum samples was performed for the analysis of testosterone using this microfluidic LC–MS/MS assay and the Beckman Access II automated antibody-based measurement system. The immunoassay results were systematically higher due to matrix interference which was easily resolved with the increased chromatographic resolution obtained in the microflow LC–MS/MS assay.
Obesity is associated with disrupted reproductive cycles in mares, but the impact of obesity on follicles and oocytes has received minimal attention. We investigated the impact of obesity on 1) expression of selected genes in follicle cells for carbohydrate metabolism, inflammatory cytokines, lipid homeostasis, endoplasmic reticulum stress, and mitochondrial function; 2) follicular fluid content of metabolic hormones and metabolites; and 3) lipid fingerprint of oocytes. Mares (9-13 yr) were classified as control (n = 8, normal weight, body condition score [BCS] 5.1, 10.4% body fat) or obese (n = 9, BCS 7.9, 16.2% body fat). Gene expression from granulosa cells (GC) and cumulus cells (CC) was evaluated by RT-PCR. Serum and follicular fluid were evaluated for insulin, leptin, adiponectin, and metabolite profiling. Oocyte lipid fingerprints were acquired using matrix-assisted laser desorption/ionization mass spectrometry. Several genes for lipid homeostasis, endoplasmic reticulum stress, and mitochondrial function were different between groups in GC and CC. Obese had (P < 0.05) or tended to have (0.05 < P < 0.1) lower insulin sensitivity and higher insulin and leptin in serum and follicular fluid. Many metabolites differed between control and obese in serum and/or follicular fluid and correlated with BCS and/or insulin sensitivity. Oocytes from control had greater concentrations of lipids consistent with phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins, while lipids consistent with triglycerides tended to be higher in obese. These findings suggest that maternal obesity causes alterations in the follicle and oocyte; the extent to which these alterations impact the conceptus and offspring is still to be determined.
Monoclonal antibodies (mAbs) are important therapeutic glycoproteins, but their large size and structural complexity make them difficult to rapidly characterize. Top-down mass spectrometry (MS) has the potential to overcome challenges of other common approaches by minimizing sample preparation and preserving endogenous modifications. However, comprehensive mAb characterization requires generation of many, well-resolved fragments and remains challenging. While ETD retains modifications and cleaves disulfide bondsmaking it attractive for mAb characterizationit can be less effective for precursors having high m/z values. Activated ion electron transfer dissociation (AI-ETD) uses concurrent infrared photoactivation to promote product ion generation and has proven effective in increasing sequence coverage of intact proteins. Here, we present the first application of AI-ETD to mAb sequencing. For the standard NIST mAb, we observe a high degree of complementarity between fragments generated using standard ETD with a short reaction time and AI-ETD with a long reaction time. Most importantly, AI-ETD reveals disulfide-bound regions that have been intractable, thus far, for sequencing with top-down MS. We conclude AI-ETD has the potential to rapidly and comprehensively analyze intact mAbs.
Photoactivation and photodissociation have long proven to be useful tools in tandem mass spectrometry, but implementation often involves cumbersome and potentially dangerous configurations. Here, we redress this problem by using a fiber-optic cable to couple an infrared (IR) laser to a mass spectrometer for robust, efficient, and safe photoactivation experiments. Transmitting 10.6 μm IR photons through a hollow-core fiber, we show that such fiber-assisted activated ion-electron transfer dissociation (AI-ETD) and IR multiphoton dissociation (IRMPD) experiments can be carried out as effectively as traditional mirror-based implementations. We report on the transmission efficiency of the hollow-core fiber for conducting photoactivation experiments and perform various intact protein and peptide analyses to illustrate the benefits of fiber-assisted AI-ETD, namely, a simplified system for irradiating the two-dimensional linear ion trap volume concurrent with ETD reactions to limit uninformative nondissociative events and thereby amplify sequence coverage. We also describe a calibration scheme for the routine analysis of IR laser alignment and power through the fiber and into the dual cell quadrupolar linear ion trap. In all, these advances allow for a more robust, straightforward, and safe instrumentation platform, permitting implementation of AI-ETD and IRMPD on commercial mass spectrometers and broadening the accessibility of these techniques.
Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.