Large reductions in the thermal conductivity of thermoelectrics using nanostructures have been widely demonstrated. Some enhancements in the thermopower through nanostructuring have also been reported. However, these improvements are generally offset by large drops in the electrical conductivity due to a drastic reduction in the mobility. Here, we show that large enhancements in the thermopower and electrical conductivity of half-Heusler (HH) phases can be achieved simultaneously at high temperatures through coherent insertion of nanometer scale full-Heusler (FH) inclusions within the matrix. The enhancements in the thermopower of the HH/FH nanocomposites arise from drastic reductions in the "effective" carrier concentration around 300 K. Surprisingly, the mobility increases drastically, which compensates for the decrease in the carrier concentration and minimizes the drop in the electrical conductivity. Interestingly, the carrier concentration in HH/FH nanocomposites increases rapidly with temperature, matching that of the HH matrix at high temperatures, whereas the temperature dependence of the mobility significantly deviates from the typical T(-α) law and slowly decreases (linearly) with rising temperature. This remarkable interplay between the temperature dependence of the carrier concentration and mobility in the nanocomposites results in large increases in the power factor at 775 K. In addition, the embedded FH nanostructures also induce moderate reductions in the thermal conductivity leading to drastic increases in the ZT of HH(1 - x)/FH(x) nanocomposites at 775 K. By combining transmission electron microscopy and charge transport data, we propose a possible charge carrier scattering mechanism at the HH/FH interfaces leading to the observed anomalous electronic transport in the synthesized HH(1 - x)/FH(x) nanocomposites.
In this communication, we report our recent achievement in synthesis and self-assembly of both spherical and cubic PbTe nanocrystals using a high-temperature solution-phase synthesis approach. The possible mechanism of nanocrystalline evolution from spherical to cubic structure has also been discussed. It is possible to use the highly orientated PbTe nanocrystals as building blocks to achieve thickness-controlled film for further manipulation into thermoelectric devices.
The effect of Bi (semimetal) nanoinclusions in nanostructured Bi2Te3 matrices is investigated. Bismuth nanoparticles synthesized by a low temperature solvothermal method are incorporated into Bi2Te3 matrix phases, synthesized by planetary ball milling. High density pellets of the Bi nanoparticle/Bi2Te3 nanocomposites are created by hot pressing the powders at 200 °C and 100 MPa. The effect of different volume fractions (0–7%) of Bi semimetal nanoparticles on the Seebeck coefficient, electrical conductivity, thermal conductivity and carrier concentration is reported. Our results show that the incorporation of semimetal nanoparticles results in a reduction in the lattice thermal conductivity in all the samples. A significant enhancement in power factor is observed for Bi nanoparticle volume fraction of 5% and 7%. We show that it is possible to reduce the lattice thermal conductivity and increase the power factor resulting in an increase in figure of merit by a factor of 2 (from ZT = 0.2 to 0.4). Seebeck coefficient and electrical conductivity as a function of carrier concentration data are consistent with the electron filtering effect, where low‐energy electrons are preferentially scattered by the barrier potentials set up at the semimetal nanoparticle/semiconductor interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.