RNA quantitation is becoming increasingly important in basic, pharmaceutical, and clinical research. For example, quantitation of viral RNAs can predict disease progression and therapeutic efficacy. Likewise, gene expression analysis of diseased versus normal, or untreated versus treated, tissue can identify relevant biological responses or assess the effects of pharmacological agents. As the focus of the Human Genome Project moves toward gene expression analysis, the field will require a flexible RNA analysis technology that can quantitatively monitor multiple forms of alternatively transcribed and/or processed RNAs (refs 3,4). We have applied the principles of invasive cleavage and engineered an improved 5'-nuclease to develop an isothermal, fluorescence resonance energy transfer (FRET)-based signal amplification method for detecting RNA in both total RNA and cell lysate samples. This detection format, termed the RNA invasive cleavage assay, obviates the need for target amplification or additional enzymatic signal enhancement. In this report, we describe the assay and present data demonstrating its capabilities for sensitive (<100 copies per reaction), specific (discrimination of 95% homologous sequences, 1 in > or =20,000), and quantitative (1.2-fold changes in RNA levels) detection of unamplified RNA in both single- and biplex-reaction formats.
Kinase-mediated phosphorylation of proteins is critical to the regulation of many biological processes, including cell growth, apoptosis, and differentiation. Because of the central role that kinases play in processes that can lead to disease states, the targeting of kinases with small-molecule inhibitors is a validated strategy for therapeutic intervention. Classic methods for assaying kinases include nonhomogenous enzyme-linked immunosorbent assays or scintillation-based formats using [gamma-(32)P]ATP. However, homogenous fluorescence-based assays have gained in popularity in recent years due to decreased costs in reagent usage through miniaturization, increased throughput, and avoidance of regulatory costs associated with the use of radiation. Whereas the readout signal from a nonhomogenous or radioactive assay is largely impervious to interferences from matrix components (such as library compounds), all homogenous fluorescent assay formats are subject to such interferences. Interference from intrinsically fluorescent compounds or from scattered light due to precipitated compounds can interfere with assays that depend on a fluorescence intensity (or fluorescence quenching), fluorescence resonance energy transfer, or fluorescence polarization-based readout. Because these interfering factors show a greater effect at lower wavelengths, one strategy to overcome such interferences is to develop fluorescent assays using longer wavelength (red-shifted) fluorescent probes. In this article, we describe the PanVera PolarScreen far-red fluorescence polarization assay format, which mitigates assay interference from autofluorescent compounds or scattered light through the use of a far-red tracer. The tracer shows substantially less interference from light scatter or autofluorescent library compounds than do fluorescein-based tracers, and gives rise to a larger assay window than the popular far-red fluorophore Cy5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.