Context.-Whole slide imaging (WSI) is now used for educational purposes, for consultation, and for archiving and quantitation of immunostains. However, it is not routinely used for the primary diagnosis of hematoxylineosin-stained tissue sections.Objective.-To compare WSI using the Aperio digital pathology system (Aperio Technologies, Inc, Vista, California) with optical microscopy (OM) for the interpretation of hematoxylin-eosin-stained tissue sections of breast lesions.Design.-The study was conducted at 3 clinical sites; 3 breast pathologists interpreted 150 hematoxylin-eosinstained slides at each site, 3 times each by WSI and 3 times each by OM. For WSI, slides were scanned using an Aperio ScanScope and interpreted on a computer monitor using Aperio ImageScope software and Aperio Spectrum data management software. Pathologic interpretations were recorded using the College of American Pathologists breast checklist. WSI diagnoses were compared with OM diagnoses for accuracy, precision (interpathologist variation), and reproducibility (intrapathologist variation). Results were considered accurate only if the interpretation matched exactly between WSI and OM. The proportion of accurate results reported by each pathologist was expressed as a percentage for the comparison of the 2 platforms.Results.-The accuracy of WSI for classifying lesions as not carcinoma or as noninvasive (ductal or lobular) or invasive (ductal, lobular, or other) carcinoma was 90.5%. The accuracy of OM was 92.1%. The precision and reproducibility of WSI and OM were determined on the basis of pairwise comparisons (3 comparisons for each slide, resulting in 36 possible comparisons). The overall precision of WSI was 90.5% in comparison with 92.1% for OM; reproducibility of WSI was 91.6% in comparison with 94.5% for OM, respectively.Conclusions.-In this study, we demonstrated that WSI and OM have similar accuracy, precision, and reproducibility for interpreting hematoxylin-eosin-stained breast tissue sections. Further clinical studies using routine surgical pathology specimens would be useful to confirm these findings and facilitate the incorporation of WSI into diagnostic practice. (Arch Pathol Lab Med. 2013;137:1733-1739 doi: 10.5858/arpa.2012-0437-OA) T he practice of surgical pathology relies on image-based light microscopy diagnosis, which enables the detailed evaluation of the cytologic and architectural features of hematoxylin-eosin (H&E)-stained tissue sections. Significant recent technological advancements have allowed for the acquisition and storage of high-quality digital images. Several commercially available platforms are available for scanning H&E-stained tissue sections, generating digital whole slide images (WSI) for viewing and interpretation. The field of digital pathology is rapidly evolving toward the creation of a digital environment for interpreting and managing pathologic information contained in a glass slide.Several applications of digital pathology are currently being embraced by pathologists. Whole slide imaging is ...
Using x-ray absorption spectroscopy at the Ru-L2,3 edge we reveal that the Ru4+ ions remain in the S=1 spin state across the rare 4d-orbital ordering transition and spin-gap formation. We find using local spin density approximation + Hubbard U band structure calculations that the crystal fields in the low-temperature phase are not strong enough to stabilize the S=0 state. Instead, we identify a distinct orbital ordering with a significant anisotropy of the antiferromagnetic exchange couplings. We conclude that La4Ru2O10 appears to be a novel material in which the orbital physics drives the formation of spin-singlet dimers in a quasi-two-dimensional S=1 system.
Red, green, blue (RGB) light-emitting-diodes (LEDs) are used to increase the visible light communication (VLC) transmission capacity via wavelength-division-multiplexing (WDM), and the color image sensor in mobile phone is used to separate different color signals via a color filter array. However, due to the wide optical bandwidths of the color filters, there is a high spectral overlap among different channels, and a high inter-channel interference (ICI) happens. Here, we propose and demonstrate an RGB VLC transmission using CMOS image sensor with multi-input multi-output (MIMO) technique to mitigate the ICI and retrieve the three independent color channels in the rolling shutter pattern. Data pattern extinction-ratio (ER) enhancement and thresholding are deployed.
The quantum Fisher information (FI), when applied to the estimation of the separation of two point sources, has been shown to be non-zero in cases where the coherence between the sources are known. Although it has been claimed that ignorance of the coherence causes the quantum FI to vanish (a resurgence of Rayleigh's curse), a more complete analysis including both the magnitude and phase of the coherence parameter is given here. Partial ignorance of the coherence is shown to potentially break Rayleigh's curse, whereas complete ignorance guarantees its resurgence.
Based on the rolling shutter effect of the complementary metal-oxide-semiconductor (CMOS) image sensor, bright and dark fringes can be observed in each received frame. By demodulating the bright and dark fringes, the visible light communication (VLC) data logic can be retrieved. However, demodulating the bright and dark fringes is challenging as there is a high data fluctuation and large extinction ratio (ER) variation in each frame due. Hence proper thresholding scheme is needed. In this work, we propose and compare experimentally three thresholding schemes; including third-order polynomial curve fitting, iterative scheme and quick adaptive scheme. The evaluation of these three thresholding schemes is performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.