Ecology 92, 218 (2011* Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.
Massively parallel sequencing of DNA by pyrosequencing technology offers much higher throughput and lower cost than conventional Sanger sequencing. Although extensively used already for sequencing of genomes, relatively few applications of massively parallel pyrosequencing to transcriptome analysis have been reported. To test the ability of this technology to provide unbiased representation of transcripts, we analyzed mRNA from Arabidopsis (Arabidopsis thaliana) seedlings. Two sequencing runs yielded 541,852 expressed sequence tags (ESTs) after quality control. Mapping of the ESTs to the Arabidopsis genome and to The Arabidopsis Information Resource 7.0 cDNA models indicated: (1) massively parallel pyrosequencing detected transcription of 17,449 gene loci providing very deep coverage of the transcriptome. Performing a second sequencing run only increased the number of genes identified by 10%, but increased the overall sequence coverage by 50%. (2) Mapping of the ESTs to their predicted full-length transcripts indicated that all regions of the transcript were well represented regardless of transcript length or expression level. Furthermore, short, medium, and long transcripts were equally represented. (3) Over 16,000 of the ESTs that mapped to the genome were not represented in the existing dbEST database. In some cases, the ESTs provide the first experimental evidence for transcripts derived from predicted genes, and, for at least 60 locations in the genome, pyrosequencing identified likely protein-coding sequences that are not now annotated as genes. Together, the results indicate massively parallel pyrosequencing provides novel information helpful to improve the annotation of the Arabidopsis genome. Furthermore, the unbiased representation of transcripts will be particularly useful for gene discovery and gene expression analysis of nonmodel plants with less complete genomic information.For approximately 30 years, sequencing of DNA by the dideoxy terminator strategy introduced by Sanger (1977) has provided the basis for almost all available information about nucleotide sequences. Pyrosequencing is an alternative technology that detects the pyrophosphate released during DNA polymerase-catalyzed incorporation of nucleotides. The pyrophosphate liberated with each nucleotide addition can generate light in a reaction coupled to ATP sulfurylase and luciferase.
C 4 photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C 3 and C 4 leaves, and to identify candidates associated with the C 4 pathway, we used massively parallel mRNA sequencing of closely related C 3 (Cleome spinosa) and C 4 (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C 3 and C 4 leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C 4 leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C 3 and C 4 leaves differs, provides a blueprint for the NAD-malic enzyme C 4 pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.