Although the events of spermiogenesis are commonly studied in amniotes, the amount of research available for lizards (Sauria) is lacking. Many studies have described the morphological characteristics of mature spermatozoa in lizards, but few detail the ultrastructural changes that occur during spermiogenesis. The purpose of this study was to gain a better understanding of the subcellular events of spermiogenesis within the temperate ground skink (Scincella laterale). The morphological data presented here represent the first complete ultrastructural study of spermiogenesis within the Scincidae clade. Samples of testes from 20 specimens were prepared using standard techniques for transmission electron microscopy. Many of the ultrastructural changes occurring during spermiogenesis within the ground skink are similar to that of other saurians. However, there were a few unique characteristics that to date have not been described during spermiogenesis in other lizards. For example, during early round spermatid development within the ground skink testis, proacrosomal granules begin to form within the acrosomal vesicle before making contact with the apex of the nucleus. Also, a prominent microtubular manchette develops during spermiogenesis; however, the circular component of the manchete is absent in this species of skink. This developmental difference in manchette formation may lead to the more robust and straight mature spermatozoa that are common within the Scincidae family. These anatomical character differences may be valuable nontraditional sources that along with more traditional sources (i.e., mitochondrial DNA) may help elucidate phylogenetic relationships, which are historically considered controversial at best, among species within Scincidae and Sauria.
To date multiple studies exist that examine the morphology of spermatozoa. However, there are limited numbers of data detailing the ontogenic characters of spermiogenesis within squamates. Testicular tissues were collected from Cottonmouths (Agkistrodon piscivorus) and tissues from spermiogenically active months were analyzed ultrastructurally to detail the cellular changes that occur during spermiogenesis. The major events of spermiogenesis (acrosome formation, nuclear elongation/DNA condensation, and flagellar development) resemble that of other squamates; however, specific ultrastructural differences can be observed between Cottonmouths and other squamates studied to date. During acrosome formation vesicles from the Golgi apparatus fuse at the apical surface of the nuclear membrane prior to making nuclear contact. At this stage, the acrosome granule can be observed in a centralized location within the vesicle. As elongation commences the acrosome complex becomes highly compartmentalized and migrates laterally along the nucleus. Parallel and circum-cylindrical microtubules (components of the manchette) are observed with parallel microtubules outnumbering the circum-cylindrical microtubules. Flagella, displaying the conserved 9 + 2 microtubule arrangement, sit in nuclear fossae that have electron lucent shoulders juxtaposed on either side of the spermatids basal plates. This study aims to provide developmental characters for squamates in the subfamily Crotalinae, family Viperidae, which may be useful for histopathological studies on spermatogenesis in semi-aquatic species exposed to pesticides. Furthermore, these data in the near future may provide morphological characters for spermiogenesis that can be added to morphological data matrices that may be used in phylogenetic analyses.
The germ cell development in the slider turtle (Trachemys scripta) testis was investigated by viewing the histology of the seminiferous epithelium in plastic sections with a light microscope. Germ cell morphologies in the slider turtle testis were similar to the morphologies of other vertebrate germ cell types. However, the slider turtle seminiferous epithelium contained germ cells that progress through spermatogenesis in a temporal rather than a spatial pattern, resulting in a single spermatogenic event that climaxed with one massive sperm release in November. Mature sperm then are stored within the epididymis until breeding commences in the following spring. The germ cell development strategy in the slider turtle is different from that of other amniotes and is more reminiscent of the developmental strategy found in the anamniotic testis. This temporal progression of germ cells through spermatogenesis within a tubular testis represents a transitional model that may be evolutionarily significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.