Sequencing short tandem repeat (STR) loci allows for determination of repeat motif variations within the STR (or entire PCR amplicon) which cannot be ascertained by size-based PCR fragment analysis. Sanger sequencing has been used in research laboratories to further characterize STR loci, but is impractical for routine forensic use due to the laborious nature of the procedure in general and additional steps required to separate heterozygous alleles. Recent advances in library preparation methods enable high-throughput next generation sequencing (NGS) and technological improvements in sequencing chemistries now offer sufficient read lengths to encompass STR alleles. Herein, we present sequencing results from 183 DNA samples, including African American, Caucasian, and Hispanic individuals, at 22 autosomal forensic STR loci using an assay designed for NGS. The resulting dataset has been used to perform population genetic analyses of allelic diversity by length compared to sequence, and exemplifies which loci are likely to achieve the greatest gains in discrimination via sequencing. Within this data set, six loci demonstrate greater than double the number of alleles obtained by sequence compared to the number of alleles obtained by length: D12S391, D2S1338, D21S11, D8S1179, vWA, and D3S1358. As expected, repeat region sequences which had not previously been reported in forensic literature were identified.
This manuscript reports Short Tandem Repeat (STR) sequence-based allele frequencies for 1036 samples across 27 autosomal STR loci: D1S1656, TPOX, D2S441, D2S1338, D3S1358, D4S2408, FGA, D5S818, CSF1PO, D6S1043, D7S820, D8S1179, D9S1122, D10S1248, TH01, vWA, D12S391, D13S317, Penta E, D16S539, D17S1301, D18S51, D19S433, D20S482, D21S11, Penta D, and D22S1045. Sequence data were analyzed by two bioinformatic pipelines and all samples have been evaluated for concordance with alleles derived from CE-based analysis at all loci. Each reported sequence includes high-quality flanking sequence and is properly formatted according to the most recent guidance of the International Society for Forensic Genetics. In addition, GenBank accession numbers are reported for each sequence, and associated records are available in the STRSeq BioProject (https://www.ncbi.nlm.nih.gov/bioproject/380127). The D3S1358 locus demonstrates the greatest average increase in heterozygosity across populations (approximately 10 percentage points). Loci demonstrating average increase in heterozygosity from 10 to 5 percentage points include (in descending order) D9S1122, D13S317, D8S1179, D21S11, D5S818, D12S391, and D2S441. The remaining 19 loci each demonstrate less than 5 percentage point increase in average heterozygosity. Discussion includes the utility of this data in understanding traditional CE results, such as informing stutter models and understanding migration challenges, and considerations for population sampling strategies in light of the marked increase in rare alleles for several of the sequence-based STR loci. This NIST 1036 data set is expected to support the implementation of STR sequencing forensic casework by providing high-confidence sequence-based allele frequencies for the same sample set which are already the basis for population statistics in many U.S. forensic laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.