The success of ventricular assist devices (VADs) in the treatment of end-stage heart failure in the adult population has led to industrial innovation in VAD design, focusing on miniaturization and the reduction of complications. A byproduct of these innovations was that newer generation devices could have clinical applications in the pediatric population. Over the last decade, VAD usage in the pediatric population has increased dramatically, and the newer generation continuous flow (CF) devices have begun to supplant the older, pulsatile flow (PF) devices, formerly the sole option for ventricular assist in the pediatric population.However, despite the increase in VAD implants in the pediatric population, patient numbers remain low, and the need to share data between pediatric VAD centers has become that much more important for the continued growth of VAD programs worldwide. The creation of pediatric VAD registries, such as the Pediatric Registry for Mechanical Circulatory Support (PediMACS), the European Registry for Patients with Mechanical Circulatory Support (EUROMACS) and the Advanced Cardiac Therapies Improving Outcomes Network (ACTION) has enabled the collection of aggregate data from VAD centers worldwide, and provides a valuable resource for clinicians and programs, as more and more pediatric heart failure patients are considered candidates for VAD therapy.
Only after a protracted learning curve did the anticipated benefits of transapical TAVI materialize for patients at high risk for surgery as predicted by the STS risk algorithms.
Introduction: The ventricles accelerate and decelerate blood; the resulting disturbances propagate through the arterial system as waves. These waves contain clinically useful information: e.g. their magnitude and timing varies with cardiac performance and their speed depends on arterial stiffness. These properties can be studied using Wave Intensity Analysis (WIA) [1] and have been shown to be altered in heart failure [2]. Conventional WIA relies on invasive catheter measurements of blood pressure and velocity. We have developed and validated a new non-invasive ultrasound-based method that allows accurate WIA. Methods: Employing a novel WIA formulation [3] based on diameter and velocity, and a ultrafast ultrasound imaging system (Verasonics, Kirkland, USA), wave intensity was measured in the abdominal aorta of rabbits. B-mode images were acquired at 1000 Hz, and diameter and velocity measured using standard cross-correlation techniques (the latter after spatio-temporal filtering to enhance the blood signal). Comparative measurements were made with a conventional WIA catheter-based system (Phillips Volcano, San Diego, USA). Ventricular dysfunction was induced by administering esmolol. Results: Measured non-invasive peak wave intensities showed good agreement with catheter-based ones (r = 0.73, p = 0.04, n = 8). Changes in the intensity and timing of the forward compression wave could be detected 1 minute after esmolol administration (n = 10): peak intensity reduced by 30.3% (p = 0.003) and was delayed 9.30 ms (p = <0.001). Conclusion: This new method enables wave intensities, reflections and speeds to be obtained non-invasively at any ultrasound accessible site. It could provide a clinically useful way to detect heart failure, and alteration of arterial tone and stiffness.
Aorto-oesophageal fistula (AEF) is rare and fatal without intervention. Having consumed a date pit 2 weeks prior, the patient in this case presented with the ‘Chiari’ triad of chest pain, sentinel arterial upper gastro-intestinal haemorrhage and exsanguination after an asymptomatic interval. Following resuscitation, the patient was managed with a Blakemore tube with both oesophageal and gastric balloons inflated to systemic pressures. An aortic stent graft was planned but the patient died on the operating table.
AEFs can be treated surgically with either open or endovascular repair. Open repair is highly risky and involves combined replacement/bypass of the thoracic aorta along with resection/repair of the involved oesophagus. Endovascular repair can prevent fatal exsanguination and increase the likelihood of survival but is associated with a significant rate of secondary infection, recurrence of fistula, mediastinitis and sepsis. Further studies are required to inform on management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.