Quantifying foraging resources available to waterfowl in different habitat types is important for estimating energetic carrying capacity. To accomplish this, most studies collect soil-core samples from the marsh substrate, sieve and sort food items, and extrapolate energy values to wetland or landscape scales. This is a costly and time-intensive process; furthermore, extrapolation methods yield energy estimates with large variances relative to the mean. From both research and management perspectives, it is important to understand sources of this variation and estimate the number of soil cores needed to reduce the variance to desired levels. Using 2,341 cores collected from freshwater and salt marsh habitats at four sites along the Atlantic Coast, we examined sampling variation and biological variation among sites and habitats. When we removed extreme outliers in the data caused by large animal food items found in a small core sample, estimates of energy density decreased by an order of magnitude for most habitats. After removing outliers, we found inconsistent geographical variation among habitat types that was especially pronounced in freshwater and no evidence for within-season temporal depletion of food resources for any site or habitat. We used a Monte Carlo simulation approach to estimate the optimal number of cores (minimizing both cost and estimated variance) sampled in each habitat type. Across most contexts, a reduction in the coefficient of variation reached diminishing returns near 40 core samples. We recommend that researchers explicitly address outliers in the data and managers acknowledge the imprecision that can arise from including or excluding outliers when estimating energy density at landscape scales. Our results suggest that collecting 40–50 cores per habitat type was sufficient to reduce the variance to acceptable levels while minimizing overall sampling costs.
In a study of almost 16 000 nest records from seven swallow species across the entire Western Hemisphere, clutch sizes decline with relative laying date in each population, but the slope of this decline grows steeper with increasing distance from the equator. Late-laying birds at all latitudes lay clutches of similar sizes, suggesting that latitudinal differences may be driven primarily by earlier-laying birds. Focused comparisons of site-years in North America with qualitatively different food availability indicate that food supply significantly affects mean clutch size but not the clutch size-lay date regression. Other studies on the seasonality of swallow food also indicate that steeper clutch size-lay date declines in the North are not caused by steeper earlier food peaks there. The distribution of lay dates grows increasingly right-skewed with increasing latitude. This variation in lay-date distributions could be due to the predominance of higher quality, early-laying (and large-clutched) individuals among populations at higher latitudes, resulting from latitudinal variation in mortality rates and the intensity of sexual selection. Our results underscore the importance of studying clutch size and lay date in tandem and suggest new research into the causes of their joint geographic variation.
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.