Particle image velocimetry (PIV) data of high Reynolds number unsteady turbulent flows are often undersampled in time; this leads to aliasing of important spectral content. The present work proposes a novel data-driven estimation technique that uses oversampled sparsely placed surface-mounted pressure sensors and long short-term memory (LSTM) neural networks to resolve the aliased transient velocity dynamics from undersampled PIV data. The method leverages the time-resolved pressure dynamics to estimate the temporal evolution of a proper orthogonal decomposition (POD)-based lowdimensional subspace of the velocity field. The proposed approach is demonstrated on a PIV dataset of a high Reynolds number turbulent separated flow over a Gaussian speed-bump benchmark geometry (ReH = 2.26 × 10 5 , where H is the Bump height). The 15 Hz PIV data is super-resolved to 2 kHz, and spectral analysis of the flowfields is conducted to educe the originally aliased unsteady dynamics of the turbulent separation bubble. The estimator is shown to accurately reconstruct the Reynolds shear stress from unseen sensor data, demonstrating its generalizability to resolve the coherent motions. The estimated velocity spectra show distributions consistent with those of other separated flows.
Effective plant growth and yield prediction is an essential task for greenhouse growers and for agriculture in general. Developing models which can effectively model growth and yield can help growers improve the environmental control for better production, match supply and market demand and lower costs. Recent developments in Machine Learning (ML) and, in particular, Deep Learning (DL) can provide powerful new analytical tools. The proposed study utilities ML and DL techniques to predict yield and plant growth on Ficus Benjamin stem growth, in controlled greenhouse environments. We deploy a new deep recurrent neural network (RNN), using the Long Short-Term Memory (LSTM) neuron model, in the prediction formulations. Both the former yield, growth and stem diameter values, as well as the microclimate conditions, are used by the RNN architecture to model the targeted growth parameters. A comparative study is presented, using ML methods, such as support vector regression and random forest regression, utilizing the mean square error criterion, in order to evaluate the performance achieved by the different methods.
Particle image velocimetry (PIV) data of high Reynolds number unsteady turbulent flows are often undersampled in time; this leads to aliasing of important spectral content. The present work proposes a novel data-driven estimation technique that uses oversampled sparsely placed surface-mounted pressure sensors and long short-term memory (LSTM) neural networks to resolve the aliased transient velocity dynamics from undersampled PIV data. The method leverages the time-resolved pressure dynamics to estimate the temporal evolution of a proper orthogonal decomposition (POD)-based low-dimensional subspace of the velocity field. The proposed approach is demonstrated on a PIV dataset of a high Reynolds number turbulent separated flow over a Gaussian speed-bump benchmark geometry (ReH = 2.26 × 105, where H is the Bump height). The 15 Hz PIV data is super-resolved to 2 kHz, and spectral analysis of the flowfields is conducted to educe the originally aliased unsteady dynamics of the turbulent separation bubble. The estimator is shown to accurately reconstruct the Reynolds shear stress from unseen sensor data, demonstrating its generalizability to resolve the coherent motions. The estimated velocity spectra show distributions consistent with those of other separated flows
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.