With commercially available hardware and supporting software, different electrical potential brain waves are measured via a headset with a collection of electrodes. Out of the different types of brain signals, the proposed brain-computer interface (BCI) controller utilizes non-task related signals, i.e. squeezing left/right hand or tapping left/right foot, due to their responsive behavior and general signal feature similarity among patients. In addition, motor imagery related signals, such as imagining left/right foot or hand movement are also examined. The main goal of the paper is to demonstrate the performance of machine learning algorithms based on classification accuracy. The performances are evaluated on BCI dataset of three male subjects to extract the most significant features. Each subject undergoes a 30-minute session composed of four experiments: two non-task related signals and two motor imagery signals. Each experiment records fifteen trials of two classes (i.e. left/right hand movement). The raw data is then pre-processed using a MatLab plugin, EEGLAB, where standard processes of cleaning and epoching the signals is performed. The paper discusses machine learning for robotic application and the common flaws when validating machine learning methods in the context of BCI to provide a brief overview on biologically (using brain waves) controlled devices.
The proposed assistive hybrid brain-computer interface (BCI) semiautonomous mobile robotic arm demonstrates a design that is (1) adaptable by observing environmental changes with sensors and deploying alternate solutions and (2) versatile by receiving commands from the user’s brainwave signals through a noninvasive electroencephalogram cap. Composed of three integrated subsystems, a hybrid BCI controller, an omnidirectional mobile base, and a robotic arm, the proposed robot has commands mapped to the user’s brainwaves related to a set of specific physical or mental tasks. The implementation of sensors and the camera systems enable both the mobile base and the arm to be semiautonomous. The mobile base’s SLAM algorithm has obstacle avoidance capability and path planning to assist the robot maneuver safely. The robot arm calculates and deploys the necessary joint movement to pick up or drop off a desired object selected by the user via a brainwave controlled cursor on a camera feed. Validation, testing, and implementation of the subsystems were conducted using Gazebo. Communication between the BCI controller and the subsystems is tested independently. A loop of prerecorded brainwave data related to each specific task is used to ensure that the mobile base command is executed; the same prerecorded file is used to move the robot arm cursor and initiate a pick-up or drop-off action. A final system test is conducted where the BCI controller input moves the cursor and selects a goal point. Successful virtual demonstrations of the assistive robotic arm show the feasibility of restoring movement capability and autonomy for a disabled user.
No abstract
Brain computer interface (BCI) systems are developed in biomedical fields to increase the quality of life. The development of a six class BCI controller to operate a semi-autonomous robotic arm is presented. The controller uses the following mental tasks: imagined left/right hand squeeze, imagined left/right foot tap, rest, one physical task, and jaw clench. To design a controller, the locations of active electrodes are verified and an appropriate machine learning algorithm is determined. Three subjects, ages ranging between 22-27, participated in five sessions of motor imagery experiments to record their brainwaves. These recordings were analyzed using event related potential plots and topographical maps to determine active electrodes. BCILAB was used to train two, three, five, and six class BCI controllers using linear discriminant analysis (LDA) and relevance vector machine (RVM) machine learning methods. The subjects' data was used to compare the two-method's performance in terms of error rate percentage. While a two class BCI controller showed the same accuracy for both methods, the three and five class BCI controllers showed the RVM approach having a higher accuracy than the LDA approach. For the five-class controller, error rate percentage was 33.3% for LDA and 29.2% for RVM. The six class BCI controller error rate percentage for both LDA and RVM was 34.5%. While the percentage values are the same, RVM was chosen as the desired machine learning algorithm based on the trend seen in the three and five class controller performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.