Physiologically based pharmacokinetic (PBPK) models have a potentially significant role in the development of a reliable predictive toxicity testing strategy. The structure of PBPK models are ideal frameworks into which disparate in vitro and in vivo data can be integrated and utilized to translate information generated, using alternative to animal measures of toxicity and human biological monitoring data, into plausible corresponding exposures. However, these models invariably include the description of well known non-linear biological processes such as, enzyme saturation and interactions between parameters such as, organ mass and body mass. Therefore, an appropriate sensitivity analysis (SA) technique is required which can quantify the influences associated with individual parameters, interactions between parameters and any non-linear processes. In this report we have defined the elements of a workflow for SA of PBPK models that is computationally feasible, accounts for interactions between parameters, and can be displayed in the form of a bar chart and cumulative sum line (Lowry plot), which we believe is intuitive and appropriate for toxicologists, risk assessors, and regulators.
There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.
The risk assessment of environmental chemicals and drugs is moving towards a paradigm shift in approach which seeks the full replacement animal testing with high throughput, mechanistic, in vitro systems. This new vision will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated using in vitro, in silico and in chemico systems, can be integrated and utilised for quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population level. Physiologically based pharmacokinetic (PBPK) models are ideally suited for this and are obligatory in order to translate in vitro concentration-response relationships to an exposure or dose, route and duration regime in people. In this report we describe PopGen, a virtual human population generator which is a user friendly, open access web-based application for the prediction of realistic anatomical, physiological and phase 1 metabolic variation in a wide range of healthy human populations. We demonstrate how PopGen can be used for QIVIVE by providing input to a PBPK model, at an appropriate level of detail, to reconstruct exposure from human biomonitoring data. We discuss how the process of exposure reconstruction from blood biomarkers, in general, is analogous to exposure or dose reconstruction from concentration-response measurements made in proposed in vitro cell based systems which are assumed to be surrogates for target organs.
A physiologically based pharmacokinetic model for Hexamoll® diisononyl-cyclohexane-1, 2-dicarboxylate was developed to interpret the biokinetics in humans after single oral doses. The model was parameterized with in vitro and in silico derived parameters and uncertainty and sensitivity analysis was used during the model development process to assess structure, biological plausibility and behavior prior to simulation and analysis of human biological monitoring data. The model provided good simulations of the urinary excretion (Curine) of two metabolites; cyclohexane-1,2-dicarboxylic acid mono hydroxyisononyl ester (OH-MINCH) and cyclohexane-1, 2-dicarboxylic acid mono carboxyisononyl ester (cx-MINCH) from the biotransformation of mono-isononyl-cyclohexane-1, 2-dicarboxylate (MINCH), the monoester metabolite of di-isononyl-cyclohexane-1,2-dicarboxylate. However, good simulations could be obtained, with and without, a lymphatic compartment. Selection of an appropriate model structure was informed by sensitivity analysis which could identify and quantify the contribution to variability in Curine by parameters, such as, the fraction of oral dose that directly entered the lymphatic compartment and therefore by-passed the liver and the fraction of MINCH bio-transformed to cx-MINCH and OH-MINCH. By constraining these parameters within biologically plausible limits the presence of a lymphatic compartment was deemed an important component of model structure. Furthermore, the use of sensitivity analysis is important in the evaluation of uncertainty around in silico derived parameters. By quantifying their impact on model output sufficient confidence in the use of a model should be afforded. This type of approach could expand the use of physiologically based pharmacokinetic models since parameterization with in silico techniques allows for rapid model development. This in turn could assist in reducing the use of animals in toxicological evaluations by enhancing the utility of “read across” techniques.
A computational workflow was developed to facilitate the process of quantitative in vitro to in vivo extrapolation (QIVIVE), specifically the translation of in vitro concentration-response to in vivo dose-response relationships and subsequent derivation of a benchmark dose value (BMD). The workflow integrates physiologically based pharmacokinetic (PBPK) modeling; global sensitivity analysis (GSA), Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) simulation. For a given set of in vitro concentration and response data the algorithm returns the posterior distribution of the corresponding in vivo, population-based dose-response values, for a given route of exposure. The novel aspect of the workflow is a rigorous statistical framework for accommodating uncertainty in both the parameters of the PBPK model (both parameter uncertainty and population variability) and in the structure of the PBPK model itself recognizing that the model is an approximation to reality. Both these sources of uncertainty propagate through the workflow and are quantified within the posterior distribution of in vivo dose for a fixed representative in vitro concentration. To demonstrate this process and for comparative purposes a similar exercise to previously published work describing the kinetics of ethylene glycol monoethyl ether (EGME) and its embryotoxic metabolite methoxyacetic acid (MAA) in rats was undertaken. The computational algorithm can be used to extrapolate from in vitro data to any organism, including human. Ultimately, this process will be incorporated into a user-friendly, freely available modeling platform, currently under development, that will simplify the process of QIVIVE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.