The behavioral correlates of rat hippocampal CA1 cells were examined in a spatial navigation task in which two cylindrical landmarks predicted the location of food. The landmarks were maintained at a constant distance from each other but were moved from trial to trial within a large arena surrounded by static background cues. On each trial, the rats were released from a box to which they returned for additional food after locating the goal. The box also was located variably from trial to trial and was moved to a new location while the animals were searching for the goal site. The discharge characteristics of multiple, simultaneously recorded cells were examined with respect to the landmarks, the static background cues, and the box in which each trial started and ended. Three clear categories of cells were observed: (1) cells with location-specific firing (place cells); (2) goal/landmark-related cells that fired in the vicinity of the goal or landmarks, regardless of their location in the arena; and (3) box-related cells that fired either when the rat was in the box or as it was leaving or entering the box, regardless of its location in the arena. Disjunctive cells with separate firing fields in more than one reference frame also were observed. These results suggest that in this task a subpopulation of hippocampal cells encodes location in the fixed spatial frame, whereas other subpopulations encode location with respect to different reference frames associated with the task-relevant, mobile objects.
Iribe, Yuri, Kevin Moore, Kevin C. H. Pang, and James M. Tepper. Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro. J. Neurophysiol. 82: 925-933, 1999. The subthalamic nucleus (STN) is one of the principal sources of excitatory glutamatergic input to dopaminergic neurons of the substantia nigra, yet stimulation of the STN produces both excitatory and inhibitory effects on nigral dopaminergic neurons recorded extracellularly in vivo. The present experiments were designed to determine the sources of the excitatory and inhibitory effects. Synaptic potentials were recorded intracellularly from substantia nigra pars compacta dopaminergic neurons in parasagittal slices in response to stimulation of the STN. Synaptic potentials were analyzed for onset latency, amplitude, duration, and reversal potential in the presence and absence of GABA and glutamate receptor antagonists. STN-evoked depolarizing synaptic responses in dopaminergic neurons reversed at approximately Ϫ31 mV, intermediate between the expected reversal potential for an excitatory and an inhibitory postsynaptic potential (EPSP and IPSP). Blockade of GABA A receptors with bicuculline caused a positive shift in the reversal potential to near 0 mV, suggesting that STN stimulation evoked a near simultaneous EPSP and IPSP. Both synaptic responses were blocked by application of the glutamate receptor antagonist, 6-cyano-7-nitroquinoxalene-2,3-dione. The confounding influence of inhibitory fibers of passage from globus pallidus and/or striatum by STN stimulation was eliminated by unilaterally transecting striatonigral and pallidonigral fibers 3 days before recording. The reversal potential of STN-evoked synaptic responses in dopaminergic neurons in slices from transected animals was approximately Ϫ30 mV. Bath application of bicuculline shifted the reversal potential to ϳ5 mV as it did in intact animals, suggesting that the source of the IPSP was within substantia nigra. These data indicate that electrical stimulation of the STN elicits a mixed EPSP-IPSP in nigral dopaminergic neurons due to the coactivation of an excitatory monosynaptic and an inhibitory polysynaptic connection between the STN and the dopaminergic neurons of substantia nigra pars compacta. The EPSP arises from a direct monosynaptic excitatory glutamatergic input from the STN. The IPSP arises polysynaptically, most likely through STN-evoked excitation of GABAergic neurons in substantia nigra pars reticulata, which produces feed-forward GABA A -mediated inhibition of dopaminergic neurons through inhibitory intranigral axon collaterals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.