Assuming O(D, D) covariant fields as the 'fundamental' variables, double field theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,n), 0 ≤ n +n ≤ D. Upon these backgrounds, strings become chiral and anti-chiral over n andn directions, respectively, while particles and strings are frozen over the n +n directions. In particular, we identify (0, 0) as Riemannian manifolds, (1, 0) as non-relativistic spacetime, (1, 1) as Gomis-Ooguri non-relativistic string, (D−1, 0) as ultra-relativistic Carroll geometry, and (D, 0) as Siegel's chiral string. Combined with a covariant KaluzaKlein ansatz which we further spell, (0, 1) leads to NewtonCartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D = 10, (3, 3) may open a new scheme for the dimensional reduction from ten to four.
The "metric" structure of nonrelativistic spacetimes consists of a one-form (the absolute clock) whose kernel is endowed with a positive-definite metric.Contrarily to the relativistic case, the metric structure and the torsion do not determine a unique Galilean (i.e. compatible) connection. This subtlety is intimately related to the fact that the timelike part of the torsion is proportional to the exterior derivative of the absolute clock. When the latter is not closed, torsionfreeness and metric-compatibility are thus mutually exclusive.We will explore generalisations of Galilean connections along the two corresponding alternative roads in a series of papers. In the present one, we focus on compatible connections and investigate the equivalence problem (i.e. the search for the necessary data allowing to uniquely determine connections) in the torsionfree and torsional cases. More precisely, we characterise the affine structure of the spaces of such connections and display the associated model vector spaces. In contrast with the relativistic case, the metric structure does not single out a privileged origin for the space of metric-compatible connections. In our construction, the role of the Levi-Civita connection is played by a whole class of privileged origins, the so-called torsional Newton-Cartan (TNC) geometries recently investigated in the literature. Finally, we discuss a generalisation of Newtonian connections to the torsional case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.