A series of new N-halamine epoxide precursors, 3-glycidyl-5,5-dialkylhydantoins (GH's), has been synthesized by a very facile and economic method. Cellulose surfaces can be treated with GH's and rendered biocidal by exposure to halogen solutions after curing the treated material. The biocidal efficacy tests showed that the chlorinated treated cellulose surfaces were antimicrobial with contact times required for 6-7 log reductions of Staphylococcus aureus and Escherichia coli O157:H7 of 5-30 min. It was found in simulated washing tests that celluloses, such as cotton swatches, treated with 3-glycidyl-5,5-dimethylhydantoin were quite stable and could survive more than the equivalent of 50 repeated home launderings with very little loss. Upon loss of the biocidal property due to long-term use, the treated surfaces could be recharged by further exposure to dilute bleach to regain antimicrobial activity. In addition, since only water was used as a solvent for the synthesis of GH's at room temperature, the reaction solution could be directly used as a treatment solution. Stability tests showed that the reaction solutions were relatively stable at room temperature and more stable at 5 °C over a period of at least 30 d. Preliminary experiments have shown that polyester swatches can also be treated with GH's and be rendered biocidal upon treatment with household bleach. The entire process should be economical for commercial application.
Novel N-halamine siloxane and epoxide coatings are described. The coatings can be rendered biocidal by exposure to dilute bleach. Once the bound chlorine is lost from the coatings, it can be regenerated by further exposure to dilute bleach. Synthetic schemes and biocidal efficacy data are presented. The stabilities of the bound chlorine on the surfaces are also addressed. Substrates employed include sand, textiles, and paint. Potential uses for the technology are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.