BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
Fire plays a major role in structuring plant communities across the globe. Interactions with soil microbes impact plant fitness, scaling up to influence plant populations and distributions.Here we present the first factorial manipulation of both fire and soil microbiome presence to investigate their interactive effects on plant performance across a suite of plant species with varying life history traits.We conducted fully factorial experiments on 11 species from the Florida scrub ecosystem to test plant performance responses to soils with varying fire histories (36 soil sources), the presence/absence of a microbiome, and exposure to an experimental burn.Results revealed interactive 'pulse' effects between fire and the soil microbiome on plant performance. On average, post-fire soil microbiomes strongly reduced plant productivity compared to unburned or sterilized soils. Interestingly, longer-term fire 'legacy' effects had minor impacts on plant performance and were unrelated to soil microbiomes.While pulse fire effects on plant-microbiome interactions are short-term, they could have long-term consequences for plant communities by establishing differential microbiomemediated priority effects during post-disturbance succession. The prominence of pulse fire effects on plant-microbe interactions has even greater import due to expected increases in fire disturbances resulting from anthropogenic climate change.
Background: Resprouting is an effective strategy for persistence of perennial plants after disturbances such as fire. However, can disturbances be so frequent that they limit resprouting? We examined the effects of fire and mowing frequency on eight species of resprouting shrubs in Florida scrub, USA, using a factorial field experiment. We burned or mowed plots at four disturbance return intervals (DRI): either annually, biennially, every three years, or once in six years (with all plots being treated in the sixth year to control for time since disturbance). We analyzed plant growth responses (height, aboveground biomass, number of stems) based on sampling pre treatment, and six months, one year, two years, and four years post-treatment. We also measured non-structural carbohydrates (NSC) and soil properties to evaluate these factors as potential drivers of resprouting responses. Results: Fire temperatures were hot (mean maxima 414 to 698°C among burn days), typical of larger fires in Florida scrub. Plant biomass and heights were affected by DRI (being suppressed by frequent disturbance, especially initially) and varied among species with palmettos recovering biomass faster, and species within the same genus generally showing similar responses. Biomass recovery in mown versus burned treatments showed comparable effects of DRI and similar trajectories over time. Numbers of stems were affected by DRI, disturbance type, and species, and increased after disturbances, especially with less frequent disturbances and mowing, and subsequently declined over time. NSC concentrations varied among species and over time and were positively related to biomass. One year post disturbance, soil moisture and organic matter content were higher in mown plots, while pH was higher in burned plots. Given the slightly lower elevation of the mown plots, we interpreted these differences as site effects. Soil properties were not affected by DRI and did not affect biomass responses. Conclusions: Although very frequent disturbances reduced shrub growth responses, the magnitude of plant responses was modest and the effects temporary. Because resprouting shrubs in Florida scrub appear resilient to a range of disturbance return intervals, frequent fire or mowing can be used effectively in restorations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.