Frustrated quantum magnets can harbor unconventional spin-liquid ground states in which the elementary magnetic moments fractionalize into new emergent degrees of freedom. While the fractionalization of quantum numbers is one of the recurring themes in modern condensed matter physics, it often remains a challenge to devise a controlled analytical framework tracking this phenomenon. A notable exception is the exactly solvable Kitaev model, in which spin degrees of freedom fractionalize into Majorana fermions and a Z2 gauge field. Here we discuss the physics of fractionalization in three-dimensional Kitaev models and demonstrate that the itinerant Majorana fermions generically form a (semi)metal which, depending on the underlying lattice structure, exhibits Majorana Fermi surfaces, nodal lines, or topologically protected Weyl nodes. We show that the nature of these Majorana metals can be deduced from an elementary symmetry analysis of the projective time-reversal and inversion symmetries for a given lattice. This allows us to comprehensively classify the gapless spin liquids of Kitaev models for the most elementary tricoordinated lattices in three dimensions. We further expand this classification by addressing the effects of time-reversal symmetry breaking and additional interactions.
The fractionalization of quantum numbers in interacting quantum many-body systems is a central motif in condensed-matter physics with prominent examples including the fractionalization of the electron in quantum Hall liquids or the emergence of magnetic monopoles in spin-ice materials. Here, we discuss the fractionalization of magnetic moments in three-dimensional Kitaev models into Majorana fermions (and a Z_{2} gauge field) and their emergent collective behavior. We analytically demonstrate that the Majorana fermions form a Weyl superconductor for the Kitaev model on the recently synthesized hyperhoneycomb structure of β-Li_{2}IrO_{3} when applying a magnetic field. We characterize the topologically protected bulk and surface features of this state, which we dub a Weyl spin liquid, including thermodynamic and transport signatures.
We describe a new architecture to integrate a psychological model into a crowd simulation system in order to obtain believable emergent behaviors. Our existing crowd simulation system (MACES) performs high level wayfinding to explore unknown environments and obtain a cognitive map for navigation purposes, in addition to dealing with low level motion within each room based on social forces. Communication and roles are added to achieve individualistic behaviors and a realistic way to spread information about the environment. To expand the range of realistic human behaviors, we use a system (PMFserv) that implements human behavior models from a range of ability, stress, emotion, decision theoretic and motivation sources. An architecture is proposed that combines and integrates MACES and PMFserv to add validated agent behaviors to crowd simulations.
This paper focuses on challenges to improving the realism of socially intelligent agents and attempts to reflect the state of the art in human behavior modeling with particular attention to the impact of personality/cultural values and affect as well as biology/stress upon individual coping and group decision making. The first section offers an assessment of the state of the practice and of the need to integrate valid human performance moderator functions (PMFs) from traditionally separated subfields of the behavioral literature. The second section pursues this goal by postulating a unifying architecture and principles for integrating existing PMF theories and models. It also illustrates a PMF testbed called PMFserv created for implementating and studying how PMFs may contribute to such an architecture. To date it interconnects versions of PMFs on physiology and stress; personality, cultural and emotive processes (Cognitive Appraisal-OCC, value systems); perception (Gibsonian affordance); social processes (relations, identity, trust, nested intentionality); and cognition (affect- and stress-augmented decision theory, bounded rationality). The third section summarizes several usage case studies (asymmetric warfare, civil unrest, and political leaders) and concludes with lessons learned. Implementing and interoperating this broad collection of PMFs helps to open the agenda for research on syntheses that can help the field reach a greater level of maturity. The companion paper, Part II, presents a case study in using PMFserv for rapid scenario composability and realistic agent behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.