For the first time, obesity appeared as a risk factor for developing severe 2009 pandemic influenza infection. Given the increase in obesity, there is a need to understand the mechanisms underlying poor outcomes in this population. In these studies, we examined the severity of pandemic influenza virus in obese mice and evaluated antiviral effectiveness. We found that genetically and diet-induced obese mice challenged with either 2009 influenza A virus subtype H1N1 or 1968 subtype H3N2 strains were more likely to have increased mortality and lung pathology associated with impaired wound repair and subsequent pulmonary edema. Antiviral treatment with oseltamivir enhanced survival of obese mice. Overall, these studies demonstrate that impaired wound lung repair in the lungs of obese animals may result in severe influenza virus infection. Alternative approaches to prevention and control of influenza may be needed in the setting of obesity.
Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus–infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.
Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism.
Although influenza is primarily a respiratory disease, it has been shown, in some cases, to induce encephalitis, including people acutely infected with the pandemic A/California/04/2009 (CA/09) H1N1 virus. Based on previous studies showing that the highly pathogenic avian influenza (HPAI) A/Vietnam/1203/2004 H5N1 virus was neurotropic, induced CNS inflammation and a transient parkinsonism, we examined the neurotropic and inflammatory potential of the CA/09 H1N1 virus in mice. Following intranasal inoculation, we found no evidence for CA/09 H1N1 virus neurotropism in the enteric, peripheral or central nervous systems. We did, however, observe a robust increase in microglial activity in the brain characterized by an increase in the number of activated Iba-1-positive microglia in the substantia nigra (SN) and the hippocampus, despite the absence of virus in the brain. qPCR analysis in SN tissue showed that the induction of microgliosis was preceded by reduced gene expression of the neurotrophic factors bdnf, and gdnf and increases in the immune modulatory chemokine chemokine (C-C motif) ligand 4 (ccl4). We also noted changes in the expression of transforming growth factor-1 (tgfβ1) in the SN starting at 7 days post-infection (dpi) that was sustained through 21 dpi, coupled with increases in arginase-1 (arg1) and csf1, M2 markers for microglia. Given that neuroinflammation contributes to generation and progression of a number of neurodegenerative disorders, these findings have significant implications as they highlight the possibility that influenza and perhaps other non-neurotropic viruses can initiate inflammatory signals via microglia activation in the brain and contribute to, but not necessarily be the primary cause of, neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.