TAC-02 was the third in a series of Trading Agent Competition events fostering research in automating trading strategies by showcasing alternate approaches in an open-invitation market game. TAC presents a challenging travel-shopping scenario where agents must satisfy client preferences for complementary and substitutable goods by interacting through a variety of market types. Michigan's entry, Walverine, attempts to bid optimally based on a competitive analysis of the TAC travel economy. Walverine's approach embodies several techniques not previously employed in TAC:(1) price prediction based on competitive equilibrium analysis, (2) hedged optimization with respect to a model of outlier prices, (3) optimal bidding based on a decision-theoretic calculation of bid actions, and (4) reinforcement learning for CDA trading strategies. Each of these is potentially applicable in a broad class of trading environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.