Leishmania (Viannia) braziliensis is responsible for the largest number of American tegumentary leishmaniasis (ATL) in Brazil. ATL can present several clinical forms including typical (TL) and atypical (AL) cutaneous and mucocutaneous (ML) lesions. To identify parasite and host factors potentially associated with these diverse clinical manifestations, we first surveyed the expression of two virulence-associated glycoconjugates, lipophosphoglycan (LPG) and the metalloprotease GP63 by a panel of promastigotes of Leishmania braziliensis (L. braziliensis) strains isolated from patients with different clinical manifestations of ATL and from the sand fly vector. We observed a diversity of expression patterns for both LPG and GP63, which may be related to strain-specific polymorphisms. Interestingly, we noted that GP63 activity varies from strain to strain, including the ability to cleave host cell molecules. We next evaluated the ability of promastigotes from these L. braziliensis strains to modulate phagolysosome biogenesis in bone marrow-derived macrophages (BMM), by assessing phagosomal recruitment of the lysosome-associated membrane protein 1 (LAMP-1) and intraphagosomal acidification. Whereas, three out of six L. braziliensis strains impaired the phagosomal recruitment of LAMP-1, only the ML strain inhibited phagosome acidification to the same extent as the L. donovani strain that was used as a positive control. While decreased phagosomal recruitment of LAMP-1 correlated with higher LPG levels, decreased phagosomal acidification correlated with higher GP63 levels. Finally, we observed that the ability to infect and replicate within host cells did not fully correlate with the inhibition of phagosome maturation. Collectively, our results revealed a diversity of strain-specific phenotypes among L. braziliensis isolates, consistent with the high genetic diversity within Leishmania populations.
BackgroundThe chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses.MethodsHere, immunostimulating and leishmanicidal properties of octyl-β-d-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations.ResultsBoth treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment.ConclusionsOverall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.