We show a comprehensive study on the structure and electronic properties of a layered manganese oxide commonly known as birnessite. We present the effects of substituting different intercalated cations (
Covalent-organic frameworks (COFs) are intriguing platforms for designing functional molecular materials. Here, we present a computational study based on van der Waals dispersion-corrected hybrid density functional theory (DFT-D) to design boroxine-linked and triazine-linked COFs intercalated with Fe. Keeping the original P − 6m2 symmetry of the pristine COF (COF-Fe-0), we have computationally designed seven new COFs by intercalating Fe atoms between two organic layers. The equilibrium structures and electronic properties of both the pristine and Fe-intercalated COF materials are investigated here. We predict that the electronic properties of COFs can be fine tuned by adding Fe atoms between two organic layers in their structures. Our calculations show that these new intercalated-COFs are promising semiconductors. The effect of Fe atoms on the electronic band structures and density of states (DOSs) has also been investigated using the aforementioned DFT-D method. The contribution of the d-subshell electron density of the Fe atoms plays an important role in improving the semiconductor properties of these new materials. These intercalated-COFs provide a new strategy to create semi-conducting materials within a rigid porous network in a highly controlled and predictable manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.