Redox regulation of EGFR signaling helps protect cells against oxidative stress. In this study, we investigated whether the cytotoxicity of an EGFR tyrosine kinase inhibitor, erlotinib (ERL), was mediated by induction of oxidative stress in human head and neck cancer (HNSCC) cells. ERL elicited cytotoxicity in vitro and in vivo while increasing a panel of oxidative stress parameters which were all reversible by the antioxidant N-acetyl cysteine. Knockdown of EGFR using siRNA similarly increased these oxidative stress parameters. Overexpression of mitochondrial targeted catalase but not superoxide dismutase reversed ERL-induced cytotoxicity. Consistent with a general role for NADPH oxidase (NOX) enzymes in ERL-induced oxidative stress, ERL-induced cytotoxicity was reversed by diphenylene iodonium, a NOX complex inhibitor. ERL reduced the expression of NOX1, NOX2 and NOX5 but induced the expression of NOX4. Knockdown of NOX4 using siRNA protected HNSCC cells from ERL-induced cytotoxicity and oxidative stress. Our findings support the concept that ERL-induced cytotoxicity is based upon a specific mechanism of oxidative stress mediated by hydrogen peroxide production through NOX4 signaling.
The hypothesis that the Akt inhibitor, perifosine (PER), combined with inhibitors of glutathione (GSH) and thioredoxin (Trx) metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC) cells was tested. PER induced increases in glutathione disulfide (%GSSG) in FaDu, Cal-27, and SCC-25 HNSCCs as well as causing significant clonogenic cell killing in FaDu and Cal-27, which was suppressed by simultaneous treatment with N-acetylcysteine (NAC). An inhibitor of GSH synthesis, buthionine sulfoximine (BSO), sensitized Cal-27 and SCC-25 cells to PER-induced clonogenic killing as well as decreased total GSH and increased %GSSG. Additionally, inhibition of thioredoxin reductase activity (TrxRed) with auranofin (AUR) was able to induce PER sensitization in SCC-25 cells that were initially refractory to PER. These results support the conclusion that PER induces oxidative stress and clonogenic killing in HNSCC cells that is enhanced with inhibitors of GSH and Trx metabolism.
Oxidative stress and mitochondrial dysfunction in cancer cells represent features that may be exploited therapeutically. We determined if agents which induce mitochondrial dysfunction such as zidovudine (AZT) and cisplatin (CIS) could enhance killing of human head and neck cancer cells via oxidative stress. AZT and/or CIS-induced cytotoxicity was determined using clonogenic survival, mitochondrial membrane potential was analyzed to investigate mitochondrial function, and glutathione was measured to determine thiol metabolism perturbations. AZT+CIS significantly increased toxicity and reduced mitochondrial membrane potential in FaDu, Cal-27 and SQ20B head and neck cancer cells while increasing % glutathione disulfide (GSSG). Treatment with the thiol antioxidant, N-acetylcysteine (NAC), reversed the loss of mitochondrial membrane potential and the increase in %GSSG, and partially protected FaDu and Cal-27 cells from AZT+CIS. Finally, an inhibitor of glutathione synthesis, L-buthionine-[S,R]-sulfoximine, sensitized the cells to AZT+CIS-induced cytotoxicity which was partially reversed by NAC. These results suggest that exposure of cancer cells to agents which induce mitochondrial dysfunction such as AZT cause significant sensitization to CIS-induced toxicity via disruptions in thiol metabolism and oxidative stress. These findings provide a biochemical rationale for evaluating agents which induce mitochondrial dysfunction in combination with chemotherapy and inhibitors of glutathione metabolism in head and neck cancer.
Poor tumor response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a significant challenge for effective treatment of head and neck squamous cell carcinoma (HNSCC). Therefore, strategies that may increase tumor response to EGFR TKIs are warranted in order to improve HNSCC patient treatment and overall survival. HNSCC tumors are highly glycolytic and increased EGFR signaling has been found to promote glucose metabolism through various mechanisms. We have previously shown that inhibition of glycolysis with 2-deoxy-D-glucose (2DG) significantly enhanced the antitumor effects of cisplatin and radiation which are commonly used to treat HNSCC. The goal of the current studies is to determine if 2DG will enhance the anti-tumor activity of the EGFR TKI erlotinib in HNSCC. Erlotinib transiently suppressed glucose consumption accompanied by alterations in pyruvate kinase M2 (PKM2) expression. 2DG enhanced the cytotoxic effect of erlotinib in vitro but reversed the anti-tumor effect of erlotinib in vivo. 2DG altered the N-glycosylation status of EGFR and induced the endoplasmic reticulum (ER) stress markers CHOP and BiP in vitro. Additionally, the effects of 2DG+erlotinib on cytotoxicity and ER stress in vitro were reversed by mannose but not glucose or antioxidant enzymes. Lastly, the protective effect of 2DG on erlotinib-induced cytotoxicity in vivo was reversed by chloroquine. Altogether, 2DG suppressed the anti-tumor efficacy of erlotinib in a HNSCC xenograft mouse model which may be due to increased cytoprotective autophagy mediated by ER stress activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.