Reactive metabolite (RM) formation is widely accepted as playing a pivotal role in causing adverse idiosyncratic drug reactions, with most attention paid to drug-induced liver injury. Mechanisms of RM formation are determined by the drug’s properties in relation to human enzymes transforming the drug. This Perspective focuses on enzymatic oxidation of alkyl groups on aromatics leading to quinone methides and benzylic alcohol sulfates as RMs, a topic that has not received very much attention. Unlike previous overviews, we will include in our Perspective several fulvene-like methides such as 3-methyleneindole. We also speculate that a few older drugs may form non-reported methides of this class. In addition, we report a few guiding DFT calculations of changes in free energy on going from a benzylic alcohol to the corresponding methide. Particularly facile reactions of 2-aminothiazole-5-methanol and 4-aminobenzyl alcohol are noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.