This paper makes a simple increment to state-ofthe-art in sarcasm detection research. Existing approaches are unable to capture subtle forms of context incongruity which lies at the heart of sarcasm. We explore if prior work can be enhanced using semantic similarity/discordance between word embeddings. We augment word embedding-based features to four feature sets reported in the past. We also experiment with four types of word embeddings. We observe an improvement in sarcasm detection, irrespective of the word embedding used or the original feature set to which our features are augmented. For example, this augmentation results in an improvement in F-score of around 4% for three out of these four feature sets, and a minor degradation in case of the fourth, when Word2Vec embeddings are used. Finally, a comparison of the four embeddings shows that Word2Vec and dependency weight-based features outperform LSA and GloVe, in terms of their benefit to sarcasm detection.
The predominant means of communication is speech; however, there are persons whose speaking or hearing abilities are impaired. Communication presents a significant barrier for persons with such disabilities. The use of deep learning methods can help to reduce communication barriers. This paper proposes a deep learning-based model that detects and recognizes the words from a person’s gestures. Deep learning models, namely, LSTM and GRU (feedback-based learning models), are used to recognize signs from isolated Indian Sign Language (ISL) video frames. The four different sequential combinations of LSTM and GRU (as there are two layers of LSTM and two layers of GRU) were used with our own dataset, IISL2020. The proposed model, consisting of a single layer of LSTM followed by GRU, achieves around 97% accuracy over 11 different signs. This method may help persons who are unaware of sign language to communicate with persons whose speech or hearing is impaired.
Word embeddings are a crucial component in modern NLP. Pre-trained embeddings released by different groups have been a major reason for their popularity. However, they are trained on generic corpora, which limits their direct use for domain specific tasks. In this paper, we propose a method to add task specific information to pre-trained word embeddings. Such information can improve their utility. We add information from medical coding data, as well as the first level from the hierarchy of ICD-10 medical code set to different pre-trained word embeddings. We adapt CBOW algorithm from the word2vec package for our purpose. We evaluated our approach on five different pre-trained word embeddings. Both the original word embeddings, and their modified versions (the ones with added information) were used for automated review of medical coding. The modified word embeddings give an improvement in f-score by 1% on the 5-fold evaluation on a private medical claims dataset. Our results show that adding extra information is possible and beneficial for the task at hand.
Predicting a reader's rating of text quality is a challenging task that involves estimating different subjective aspects of the text, like structure, clarity, etc. Such subjective aspects are better handled using cognitive information. One such source of cognitive information is gaze behaviour. In this paper, we show that gaze behaviour does indeed help in effectively predicting the rating of text quality. To do this, we first model text quality as a function of three properties -organization, coherence and cohesion. Then, we demonstrate how capturing gaze behaviour helps in predicting each of these properties, and hence the overall quality, by reporting improvements obtained by adding gaze features to traditional textual features for score prediction. We also hypothesize that if a reader has fully understood the text, the corresponding gaze behaviour would give a better indication of the assigned rating, as opposed to partial understanding. Our experiments validate this hypothesis by showing greater agreement between the given rating and the predicted rating when the reader has a full understanding of the text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.