The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO
2
/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO
2
/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO
2
gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO
2
methanol synthesis.
Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalytic testing in an ultrahigh-vacuum-compatible recirculating batch reactor cell. Both intermetallic precursors develop a Pd0–ZrO2 phase boundary under realistic DRM conditions, whereby the oxidative segregation of ZrO2 from bulk intermetallic PdxZry leads to a highly active composite layer of carbide-modified Pd0 metal nanoparticles in contact with tetragonal ZrO2. This active state exhibits reaction rates exceeding those of a conventional supported Pd–ZrO2 reference catalyst and its high activity is unambiguously linked to the fast conversion of the highly reactive carbidic/dissolved C-species inside Pd0 toward CO at the Pd/ZrO2 phase boundary, which serves the role of providing efficient CO2 activation sites. In contrast, the near-surface intermetallic precursor decomposes toward ZrO2 islands at the surface of a quasi-infinite Pd0 metal bulk. Strongly delayed Pd carbide accumulation and thus carbon resegregation under reaction conditions leads to a much less active interfacial ZrO2–Pd0 state.
The reactive metal-support interaction in the Cu-In 2 O 3 system and its implications on the CO 2 selectivity in methanol steam reforming (MSR) have been assessed using nanosized Cu particles on a powdered cubic In 2 O 3 support. Reduction in hydrogen at 300°C resulted in the formation of metallic Cu particles on In 2 O 3. This system already represents a highly CO 2-selective MSR catalyst with~93% selectivity, but only 56% methanol conversion and a maximum H 2 formation rate of 1.3 µmol g Cu −1 s −1. After reduction at 400°C, the system enters an In 2 O 3-supported intermetallic compound state with Cu 2 In as the majority phase. Cu 2 In exhibits markedly different self-activating properties at equally pronounced CO 2 selectivities between 92% and 94%. A methanol conversion improvement from roughly 64% to 84% accompanied by an increase in the maximum hydrogen formation rate from 1.8 to 3.8 µmol g Cu −1 s −1 has been observed from the first to the fourth consecutive runs. The presented results directly show the prospective properties of a new class of Cu-based intermetallic materials, beneficially combining the MSR properties of the catalyst's constituents Cu and In 2 O 3. In essence, the results also open up the pathway to in-depth development of potentially CO 2-selective bulk intermetallic Cu-In compounds with well-defined stoichiometry in MSR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.