The potentiality to find precursors of human language in nonhuman primates is questioned because of differences related to the genetic determinism of human and nonhuman primate acoustic structures. Limiting the debate to production and acoustic plasticity might have led to underestimating parallels between human and nonhuman primates. Adult-young differences concerning vocal usage have been reported in various primate species. A key feature of language is the ability to converse, respecting turn-taking rules. Turn-taking structures some nonhuman primates' adult vocal exchanges, but the development and the cognitive relevancy of this rule have never been investigated in monkeys. Our observations of Campbell's monkeys' spontaneous vocal utterances revealed that juveniles broke the turn-taking rule more often than did experienced adults. Only adults displayed different levels of interest when hearing playbacks of vocal exchanges respecting or not the turn-taking rule. This study strengthens parallels between human conversations and nonhuman primate vocal exchanges.
Measuring the affective state of an individual across species with comparable non-invasive methods is a current challenge in animal communication research. This study aims to explore to which extent affect intensity is conveyed in the vocal behaviours of three nonhuman primate species (Campbell's monkeys, De Brazza's monkeys, red-capped mangabeys), which vary in body size, ecological niche and social system. Similarly in the three species, we experimentally induced a change in captive social groups' affect by locking all group members together in their outside enclosure. The two experimental conditions which varied in affect intensity consisted in imposing a pre-reunion 90 mn-separation by splitting up the respective group into two subgroups (High affect condition) or not (Low affect condition). We measured call rates as well as voice features at the time of reunion in both conditions. The three studied species reacted in a very similar way. Across species, call rates changed significantly between the behaviourally defined states. Furthermore, contact call duration and, to some extent, voice pitch increased. Our results suggest, for the first time in arboreal Old World monkeys, that affect intensity is conveyed reliably in vocal behaviour and specific acoustic characteristics of voice, irrespective of body size and ecological niche differences between species. Cross-taxa similarities in acoustic cues of affect intensity point to phylogenetic constraints and inheritance from a common ancestor, whereas variations in vocal behaviour and affect intensity-related acoustic cues between species may be an adaptation to specific social requirements and depend on social systems. Our findings as well as a comparison with published works on acoustic communication in other vertebrate groups support the hypothesis that affect intensity in human voice originates from precursors already found deep inside the vertebrate phylogeny.
The central position and universality of music in human societies raises the question of its phylogenetic origin. One of the most important properties of music involves harmonic musical intervals, in response to which humans show a spontaneous preference for consonant over dissonant sounds starting from early human infancy. Comparative studies conducted with organisms at different levels of the primate lineage are needed to understand the evolutionary scenario under which this phenomenon emerged. Although previous research found no preference for consonance in a New World monkey species, the question remained opened for Old World monkeys. We used an experimental paradigm based on a sensory reinforcement procedure to test auditory preferences for consonant sounds in Campbell's monkeys (Cercopithecus campbelli campbelli), an Old World monkey species. Although a systematic preference for soft (70 dB) over loud (90 dB) control white noise was found, Campbell's monkeys showed no preference for either consonant or dissonant sounds. The preference for soft white noise validates our noninvasive experimental paradigm, which can be easily reused in any captive facility to test for auditory preferences. This would suggest that human preference for consonant sounds is not systematically shared with New and Old World monkeys. The sensitivity for harmonic musical intervals emerged probably very late in the primate lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.