Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess phenotypic consequences of each perturbation. Here we describe a CRISPR/Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in S. cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased >5-fold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome-scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.
The low costs of array‐synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost‐effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site‐specific recombination to index library DNA, and next‐generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost‐effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.
Copper formulations have been used for decades for antimicrobial and antifouling applications. With the development of nano-formulations of copper that are more effective than their ionic and micron-sized analogs, a key regulatory question is whether these materials should be treated as new or existing materials. To address this issue, here we compare the magnitude and mechanisms of toxicity of a series of Cu species (at concentration ranging from 2–250 µg/mL), including nano Cu, nano CuO, nano Cu(OH)2 (CuPro and Kocide), micro Cu, micro CuO, ionic Cu2+ (CuCl2 and CuSO4) in two species of bacteria (Escherichia coli and Lactobacillus brevis). The primary size of the particles studied ranged from 10 nm to 10 µm. Our results reveal that Cu and CuO nanoparticles (NPs) are more toxic than their micron-sized counterparts at the same Cu concentration, with toxicities approaching that of the ionic Cu species. Strikingly, these NPs showed distinct differences in their mode of toxicity when compared to the ionic and micron-sized Cu, highlighting the unique toxicity properties of materials at the nanoscale. In vitro DNA damage assays reveal that both nano Cu and micron-sized Cu are capable of causing complete degradation of plasmid DNA but electron tomography results show that only nanoformulations of Cu are internalized as intact intracellular particles. These studies suggest that nano Cu at the concentration of 50 µg/mL may have unique genotoxicity in bacteria compared to ionic and micron-sized Cu.
Histidine protein methylation is an unusual posttranslational modification. In the yeast Saccharomyces cerevisiae, the large ribosomal subunit protein Rpl3p is methylated at histidine 243, a residue that contacts the 25S rRNA near the P site. Rpl3p methylation is dependent upon the presence of Hpm1p, a candidate seven-beta-strand methyltransferase. In this study, we elucidated the biological activities of Hpm1p in vitro and in vivo. Amino acid analyses reveal that Hpm1p is responsible for all of the detectable protein histidine methylation in yeast. The modification is found on a polypeptide corresponding to the size of Rpl3p in ribosomes and in a nucleus-containing organelle fraction but was not detected in proteins of the ribosome-free cytosol fraction. In vitro assays demonstrate that Hpm1p has methyltransferase activity on ribosome-associated but not free Rpl3p, suggesting that its activity depends on interactions with ribosomal components. hpm1 null cells are defective in early rRNA processing, resulting in a deficiency of 60S subunits and translation initiation defects that are exacerbated in minimal medium. Cells lacking Hpm1p are resistant to cycloheximide and verrucarin A and have decreased translational fidelity. We propose that Hpm1p plays a role in the orchestration of the early assembly of the large ribosomal subunit and in faithful protein production.
Antimicrobial resistance (AMR) is spreading worldwide and keeps evolving to adapt to antibiotics, causing increasing threats in clinics, which necessitates the exploration of antimicrobial agents for not only killing of resistant cells but also prevention of AMR progression. However, so far, there has been no effective approach. Herein, we designed lanthanum hydroxide and graphene oxide nanocomposites (La@GO) to confer a synergistic bactericidal effect in all tested resistant strains. More importantly, long-term exposure of E. coli (AMR) to subminimum inhibitory concentrations of La@GO does not trigger detectable secondary resistance, while conventional antibiotics and silver nanoparticles lead to a 16- to 64-fold increase in tolerance. The inability of E. coli to evolve resistance to La@GO is likely due to a distinctive extracellular multitarget invasion killing mechanism involving lipid dephosphorylation, lipid peroxidation, and peptidoglycan disruption. Overall, our results highlight La@GO nanocomposites as a promising solution to combating resistant bacteria without inducing the evolution of AMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.