Summary 1.Millions of shorebirds migrate each year through a small number of highly productive staging areas where they often conflict with fisheries interests. Delaware Bay, USA, is a major shorebird stopover site where, in spring, many thousands of shorebirds undergo rapid mass gain by feeding on the eggs of commercially harvested horseshoe crabs Limulus polyphemus . 2. Environmental factors may cause deviations from the best migration schedule. We used within-year mass gain data from red knot Calidris canutus caught in Delaware Bay between 1998 and 2005 to determine the degree of flexibility individuals have to vary migration speed. 3. Mass gain by birds below 133 g was shown to comprise 15·3% fat (39 kJ g − 1 ), the remainder being lean mass (6 kJ g − 1 ). Above this critical level, fat comprised 83·9% of mass deposition. The rates of energy deposition (kJ d − 1 ) were therefore fundamentally different between the two states but were among the highest ever recorded among vertebrates (5-7 × basic metabolic rate). 4. A total of 36-62% of the variation in observed rates of energy deposition between 1998 and 2002 was explained by a year factor, date and mass at initial capture and interaction terms, such that light-weight birds at the end of May had rates of mass gain or energy deposition two to three times higher than birds of similar mass in mid-May, indicating that birds were attempting to achieve a certain mass by a certain date. In 2003 and 2005, this relationship broke down as a result of lower densities of eggs. 5. Synthesis and application. The maintenance of high densities of crab eggs required for high rates of mass gain in red knot requires severe cuts in, or the complete cessation of, the crab harvest, reduced human and raptor-related disturbance as well as management of beaches to provide sufficient crab-spawning habitat. These findings are widely applicable to other systems where harvesting activities come into conflict with migrating animals and show that certain sections of the population, in this case the long-distance migrants from South America, will be impacted more than short-distance migrants whose physiology may give them access to alternative food resources.
Understanding how events during one period of the annual cycle carry over to affect survival and other fitness components in other periods is essential to understanding migratory bird demography and conservation needs. Previous research has suggested that western Atlantic red knot (Calidris canutus rufa) populations are greatly affected by horseshoe crab (Limulus polyphemus) egg availability at Delaware Bay stopover sites during their spring northward migration. We present a mass‐based multistate, capture‐recapture/resighting model linking (1) red knot stopover mass gain to horseshoe crab spawning abundance and (2) subsequent apparent annual survival to mass state at the time of departure from the Delaware Bay stopover area. The model and analysis use capture‐recapture/resighting data with over 16,000 individual captures and 13,000 resightings collected in Delaware Bay over a 12 year period from 1997–2008, and the results are used to evaluate the central management hypothesis that red knot populations can be influenced by horseshoe crab harvest regulations as part of a larger adaptive management effort. Model selection statistics showed support for a positive relationship between horseshoe crab spawning abundance during the stopover and the probability of red knots gaining mass (parameter coefficient from the top model b̂ = 1.71, = 0.46). Our analyses also supported the link between red knot mass and apparent annual survival, although average estimates for the two mass classes differed only slightly. The addition of arctic snow depth as a covariate influencing apparent survival improved the fit of the data to the models (parameter coefficient from the top model b̂ = 0.50, = 0.08). Our results indicate that managing horseshoe crab resources in the Delaware Bay has the potential to improve red knot population status.
Adaptive management requires that predictive models be explicit and transparent to improve decisions by comparing management actions, directing further research and monitoring, and facilitating learning. The rufa subspecies of red knots (Calidris canutus rufa), which has recently exhibited steep population declines, relies on horseshoe crab (Limulus polyphemus) eggs as their primary food source during stopover in Delaware Bay during spring migration. We present a model with two different parameterizations for use in the adaptive management of horseshoe crab harvests in the Delaware Bay that links red knot mass gain, annual survival, and fecundity to horseshoe crab dynamics. The models reflect prevailing hypotheses regarding ecological links between these two species. When reported crab harvest from 1998 to 2008 was applied, projections corresponded to the observed red knot population abundances depending on strengths of the demographic relationship between these species. We compared different simulated horseshoe crab harvest strategies to evaluate whether, given this model, horseshoe crab harvest management can affect red knot conservation and found that restricting harvest can benefit red knot populations. Our model is the first to explicitly and quantitatively link these two species and will be used within an adaptive management framework to manage the Delaware Bay system and learn more about the specific nature of the linkage between the two species.
Red knots (Calidris canutus rufa) have 3 distinct nonbreeding regions: 1 in the southeastern United States and Caribbean, another on the northeast coast of Brazil in the Maranhão region, and a third along the Patagonian coasts of Chile and Argentina. Effective conservation and recovery of this threatened long-distance migrant will require knowledge of population structure, migration ecology, and abundance and distribution throughout the annual cycle. We conducted a stopover population and biogeographic assessment of knots at the Altamaha River Delta, Georgia, an important stopover area in the southeastern United States. We estimated stopover population size and stopover duration during post-breeding migration in 2011 at the Altamaha study area using mark-resight data, and we inferred nonbreeding regions for this stopover population using stable isotope ratios of carbon and nitrogen in feathers, and observations (sightings and captures) during boreal winter from across the hemisphere. With an integrated Bayesian analysis of all these data, we also estimated the number of birds in the southeastern United States and northern Brazil during boreal winter. For mark-resight analyses in Georgia, we made observations of marked individuals during 14 weeks from early August to early November 2011 and detected 814 individually marked birds. We used the Jolly-Seber mark-recapture model and estimated the southbound passage population at approximately 23,400 red knots. In ongoing studies elsewhere, isotope samples were collected from 175 (21%) of the 814 birds detected in our study, and !1 sighting or capture record during boreal winter was located in data repositories for 659 birds (81%). Isotopic signatures and boreal winter records indicate that the majority (82-96%) of the birds that stopped at the Altamaha Delta spend the boreal winter in the northern part of the nonbreeding range (southeast USA, Caribbean, and northern Brazil). Knots migrating to the southeastern United States, Caribbean, or Brazil remained on the Altamaha Delta for 42 days, whereas birds migrating to Tierra del Fuego remained only 21 days. Combining our estimate of the Altamaha stopover population size (23,400 birds) and the estimated proportion in the northern nonbreeding region (82-96%), we derived a minimum estimate of the number of knots in the southeastern United States, Caribbean, and northern South America during the boreal winter: approximately 20,800 knots, of which approximately 10,400 knots occupy the southeastern United States and 5,400 occupy Brazil. Our results provide additional evidence that coastal Georgia is an important migration area for red knots, and provide information about population structure and migratory connectivity that will be valuable for conservation planning. Ó 2017 The Wildlife Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.