We present a reversible cluster aggregation model for 2-D macromolecules represented by line segments in 2-D; and, we use it to describe the aggregation process of functionalized graphene particles in an aqueous SDS surfactant solution. The model produces clusters with similar sizes and structures as a function of SDS concentration in agreement with experiments and predicts the existence of a critical surfactant concentration (C crit ) beyond which thermodynamically stable graphene suspensions form. Around C crit , particles form dense clusters rapidly and sediment. At C ( C crit , a contiguous ramified network of graphene gel forms which also densifies, but at a slower rate, and sediments with time. The deaggregation-reaggregation mechanism of our model captures the restructuring of the large aggregates towards a graphite-like structure for the low SDS concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.