Improvements in crop resistance to pathogens can reduce yield losses and address global malnourishment today. Gene-for-gene -type interactions can identify new sources of resistance but genetic resistance is often short lived. Ultimately an understanding of how pathogens rapidly adapt will allow us to both increase resistance gene durability and more effectively target chemical treatments. Until recently all agricultural pathogens were living on wild hosts. To understand crop pathogen evolution, we compared genetic diversity in agricultural and wild populations. Wild reservoirs may be the source of emergent pathogen lineages, but here we outline a strategy for comparison of wild and agricultural pathogen populations to highlight genes adapting to agriculture. To address this, we have selected and developed the beet rust system (Beta vulgaris, Uromyces beticola, respectively) as our wild-agricultural model. Our hypothesis is that pathogen adaptation to agricultural crops will be evident as divergence in comparisons of wild and agricultural plant pathogen populations. We sampled isolates in both the wild and agriculture, sequenced and assembled and annotated a large fungal genome and analysed genetic diversity in 42 re-sequenced rust isolates. We found population differentiation between isolates in the wild compared to a predominantly agricultural group. Fungal effector genes are co-evolving with host resistance and are important for successful colonisation. We predicted (and found) that these exhibit a greater signal of diversification and adaptation and more importantly displayed increased wild agricultural divergence. Finding a signal of adaptation in these genes highlights this as an important strategy to identify genes which are key to pathogen success, that analysis of agricultural isolates alone cannot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.