T helper cells that produce interleukin 17 (IL-17; 'T(H)-17 cells') are a distinct subset of proinflammatory cells whose in vivo function requires IL-23 but whose in vitro differentiation requires only IL-6 and transforming growth factor-beta (TGF-beta). We demonstrate here that IL-6 induced expression of IL-21 that amplified an autocrine loop to induce more IL-21 and IL-23 receptor in naive CD4(+) T cells. Both IL-21 and IL-23, along with TGF-beta, induced IL-17 expression independently of IL-6. The effects of IL-6 and IL-21 depended on STAT3, a transcription factor required for the differentiation of T(H)-17 cells in vivo. IL-21 and IL-23 induced the orphan nuclear receptor RORgammat, which in synergy with STAT3 promoted IL-17 expression. IL-6 therefore orchestrates a series of 'downstream' cytokine-dependent signaling pathways that, in concert with TGF-beta, amplify RORgammat-dependent differentiation of T(H)-17 cells.
Autophagosomes delivers cytoplasmic constituents to lysosomes for degradation while inflammasomes are molecular platforms activated by infection or stress that regulate the activity of caspase-1 and the maturation of interleukin 1β (IL-1β) and IL-18. Here we show that the induction of AIM2 or NLRP3 inflammasomes in macrophages triggered RalB activation and autophagosome formation. The induction of autophagy did not depend upon ASC or capase-1, but was dependent on the presence of the inflammasome sensor. Blocking autophagy potentiated inflammasome activity while stimulating autophagy limited it. Assembled inflammasomes underwent ubiquitination and recruited the autophagic adaptor p62, which assisted their delivery to autophagosomes. Our data indicate that autophagy accompanies inflammasome activation to temper inflammation by eliminating active inflammasomes.
To investigate the respective contributions of TLR versus IL-1R mediated signals in MyD88 dependent control of Mycobacterium tuberculosis, we compared the outcome of M. tuberculosis infection in MyD88, TRIF/MyD88, IL-1R1, and IL-1β-deficient mice. All four strains displayed acute mortality with highly increased pulmonary bacterial burden suggesting a major role for IL-1β signaling in determining the MyD88 dependent phenotype. Unexpectedly, the infected MyD88 and TRIF/MyD88-deficient mice, rather than being defective in IL-1β expression, displayed increased cytokine levels relative to wild-type animals. Similarly, infected mice deficient in caspase-1 and ASC, which have critical functions in inflammasome-mediated IL-1β maturation, showed unimpaired IL-1β production and importantly, were considerably less susceptible to infection than IL-1β deficient mice. Together our findings reveal a major role for IL-1β in host resistance to M. tuberculosis and indicate that during this infection the cytokine can be generated by a mechanism that does not require TLR signaling or caspase-1. The Journal of Immunology, 2010, 184: 3326–3330.
Mycobacterium tuberculosis is a virulent intracellular pathogen that survives in macrophages even in the presence of an intact adaptive immune response. Type I interferons (IFN) have been shown to exacerbate tuberculosis in mice and to be associated with disease progression in infected humans. Nevertheless, the mechanisms by which type I IFN regulate the host response to M. tuberculosis infection are poorly understood. In this study, we show that M. tuberculosis induces an IFN-related gene expression signature in infected primary human macrophages, which is dependent on host type I IFN signaling as well as the mycobacterial virulence factor, Region of Difference 1. We further demonstrate that type I IFN selectively limits the production of IL-1β, a critical mediator of immunity to M. tuberculosis. This regulation occurs at the level of IL1B mRNA expression, rather than caspase-1 activation or autocrine IL-1 amplification and appears to be preferentially utilized by virulent mycobacteria since avirulent M. bovis bacillus Calmette-Guerin (BCG) fails to trigger significant expression of type I IFN or release of mature IL-1β protein. The latter property is associated with decreased caspase-1-dependent IL-1β maturation in the BCG-infected macrophages. Interestingly, human monocytes in contrast to macrophages produce comparable levels of IL-1β in response to either M. tuberculosis or BCG. Together, these findings demonstrate that virulent and avirulent mycobacteria employ distinct pathways for regulating IL-1β production in human macrophages and reveal that in the case of M. tuberculosis infection the induction of type I IFN is a major mechanism utilized for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.