The intracellular domain (ICD) of Cys-loop receptors mediates diverse functions. To date, no structure of a full-length ICD is available due to challenges stemming from its dynamic nature. Here, combining nuclear magnetic resonance (NMR) and electron spin resonance experiments with Rosetta computations, we determine full-length ICD structures of the human α7 nicotinic acetylcholine receptor in a resting state. We show that ~57% of the ICD residues are in highly flexible regions, primarily in a large loop (loop L) with the most mobile segment spanning ~50 Å from the central channel axis. Loop L is anchored onto the MA helix and virtually forms two smaller loops, thereby increasing its stability. Previously known motifs for cytoplasmic binding, regulation, and signaling are found in both the helices and disordered flexible regions, supporting the essential role of the ICD conformational plasticity in orchestrating a broad range of biological processes.
Protein dynamics is at the heart of all cellular processes. Here, we utilize the dHis-Cu II NTA label to obtain site-specific information on dynamics for both an a-helix and b-sheet site of GB1, the immunoglobulin binding domain of protein G. Spectral features found in our CW-EPR measurements were consistent with the overall rigid nature of GB1 and with predictions from molecular dynamics simulations. Using this information, we show the potential of this approach to elucidate the role of dynamics in substrate binding of a functionally necessary a-helix in human glutathione transferase A1-1 (hGSTA1-1). We observe two dynamical modes for the helix. The addition of the inhibitor GS-Met and GS-Hex resulted in hGSTA1-1 to favor the more rigid active state conformation, while the faster mode potentially aids the search for substrates. Together the results illustrate the remarkable potential of the dHis-based labelling approach to measure sitespecific dynamics using room temperature lineshape analysis.
Conspectus In this Account, we showcase site-directed Cu2+ labeling in proteins and DNA, which has opened new avenues for the measurement of the structure and dynamics of biomolecules using electron paramagnetic resonance (EPR) spectroscopy. In proteins, the spin label is assembled in situ from natural amino acid residues and a metal complex and requires no post-expression synthetic modification or purification procedures. The labeling scheme exploits a double histidine (dHis) motif, which utilizes endogenous or site-specifically mutated histidine residues to coordinate a Cu2+ complex. Pulsed EPR measurements on such Cu2+-labeled proteins potentially yield distance distributions that are up to 5 times narrower than the common protein spin labelthe approach, thus, overcomes the inherent limitation of the current technology, which relies on a spin label with a highly flexible side chain. This labeling scheme provides a straightforward method that elucidates biophysical information that is costly, complicated, or simply inaccessible by traditional EPR labels. Examples include the direct measurement of protein backbone dynamics at β-sheet sites, which are largely inaccessible through traditional spin labels, and rigid Cu2+–Cu2+ distance measurements that enable higher precision in the analysis of protein conformations, conformational changes, interactions with other biomolecules, and the relative orientations of two labeled protein subunits. Likewise, a Cu2+ label has been developed for use in DNA, which is small, is nucleotide independent, and is positioned within the DNA helix. The placement of the Cu2+ label directly reports on the biologically relevant backbone distance. Additionally, for both of these labeling techniques, we have developed models for interpretation of the EPR distance information, primarily utilizing molecular dynamics (MD) simulations. Initial results using force fields developed for both protein and DNA labels have agreed with experimental results, which has been a major bottleneck for traditional spin labels. Looking ahead, we anticipate new combinations of MD and EPR to further our understanding of protein and DNA conformational changes, as well as working synergistically to investigate protein–DNA interactions.
Electron paramagnetic resonance (EPR) has become an important tool to probe conformational changes in nucleic acids. An array of EPR labels for nucleic acids are available, but they often come at the cost of long tethers, are dependent on the presence of a particular nucleotide or can be placed only at the termini. Site directed incorporation of Cu2+-chelated to a ligand, 2,2′dipicolylamine (DPA) is potentially an attractive strategy for site-specific, nucleotide independent Cu2+-labelling in DNA. To fully understand the potential of this label, we undertook a systematic and detailed analysis of the Cu2+-DPA motif using EPR and molecular dynamics (MD) simulations. We used continuous wave EPR experiments to characterize Cu2+ binding to DPA as well as optimize Cu2+ loading conditions. We performed double electron-electron resonance (DEER) experiments at two frequencies to elucidate orientational selectivity effects. Furthermore, comparison of DEER and MD simulated distance distributions reveal a remarkable agreement in the most probable distances. The results illustrate the efficacy of the Cu2+-DPA in reporting on DNA backbone conformations for sufficiently long base pair separations. This labelling strategy can serve as an important tool for probing conformational changes in DNA upon interaction with other macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.