Modern video players employ complex algorithms to adapt the bitrate of the video that is shown to the user. Bitrate adaptation requires a tradeoff between reducing the probability that the video freezes and enhancing the quality of the video shown to the user. A bitrate that is too high leads to frequent video freezes (i.e., rebuffering), while a bitrate that is too low leads to poor video quality. Video providers segment the video into short chunks and encode each chunk at multiple bitrates. The video player adaptively chooses the bitrate of each chunk that is downloaded, possibly choosing different bitrates for successive chunks. While bitrate adaptation holds the key to a good quality of experience for the user, current video players use ad-hoc algorithms that are poorly understood. We formulate bitrate adaptation as a utility maximization problem and devise an online control algorithm called BOLA that uses Lyapunov optimization techniques to minimize rebuffering and maximize video quality. We prove that BOLA achieves a time-average utility that is within an additive term O(1/V) of the optimal value, for a control parameter V related to the video buffer size. Further, unlike prior work, our algorithm does not require any prediction of available network bandwidth. We empirically validate our algorithm in a simulated network environment using an extensive collection of network traces. We show that our algorithm achieves near-optimal utility and in many cases significantly higher utility than current state-of-the-art algorithms. Our work has immediate impact on real-world video players and for the evolving DASH standard for video transmission.
Modern video streaming uses adaptive bitrate (ABR) algorithms that run inside video players and continually adjust the quality (i.e., bitrate) of the video segments that are downloaded and rendered to the user. To maximize the quality-of-experience (QoE) of the user, ABR algorithms must stream at a high bitrate with low rebuffering and low bitrate oscillations. Further, a good ABR algorithm is responsive to user and network events and can be used in demanding scenarios such as low-latency live streaming. Recent research papers provide an abundance of ABR algorithms but fall short on many of the above real-world requirements. We develop Sabre, an open-source publicly available simulation tool that enables fast and accurate simulation of adaptive streaming environments. We empirically validated Sabre to show that it accurately simulates real-world environments. We used Sabre to design and evaluate BOLA-E and DYNAMIC, two novel ABR algorithms. We also developed a FAST SWITCHING algorithm that can replace segments that have already been downloaded with higher-bitrate (thus, higher-quality) segments. The new algorithms provide higher QoE to the user in terms of higher bitrate, fewer rebuffers, and lesser bitrate oscillations. In addition, these algorithms react faster to user events such as startup and seek, and they respond more quickly to network events such as improvements in throughput. Further, they perform very well for live streams that require low latency, a challenging scenario for ABR algorithms. Overall, our algorithms offer superior video QoE and responsiveness for real-life adaptive video streaming, in comparison to the state-of-the-art. Importantly, all three algorithms presented in this article are now part of the official DASH reference player dash.js and are being used by video providers in production environments. While our evaluation and implementation are focused on the DASH environment, our algorithms are equally applicable to other adaptive streaming formats such as Apple HLS.
Endourological retrograde cannulation of the transplant ureter may be required for diagnostic studies, ureteroscopy or stent insertion. This can be challenging owing to the angle of transplant ureter (TU) entry into the bladder dome or side wall. Normally, a guidewire and straight ureteric catheters placed through a rigid cystoscope are used to cannulate the native ureteric orifice but these are often inadequate to access the TU. A flexible cystoscope can be used to insert a guidewire into a difficult TU orifice. An alternative technique is presented using angled angiography catheters (Fig 1) placed via a rigid cystoscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.