Information transfer at chemical synapses occurs when vesicles fuse with the plasma membrane and release neurotransmitter. This process is stochastic and its likelihood of occurrence is a crucial factor in the regulation of signal propagation in neuronal networks. The reliability of neurotransmitter release can be highly variable: experimental data from electrophysiological, molecular and imaging studies have demonstrated that synaptic terminals can individually set their neurotransmitter release probability dynamically through local feedback regulation. This local tuning of transmission has important implications for current models of single-neuron computation.
The synaptic vesicle cycle is vital for sustained neurotransmitter release. It has been assumed that functional synaptic vesicles are replenished autonomously at individual presynaptic terminals. Here we tested this assumption by using FM dyes in combination with fluorescence recovery after photobleaching and correlative light and electron microscopy in cultured rat hippocampal neurons. After photobleaching, synapses acquired recently recycled FM dye-labeled vesicles originating from nonphotobleached synapses by a process requiring dynamic actin turnover. The imported vesicles entered the functional pool at their host synapses, as revealed by the exocytic release of the dye upon stimulation. FM1-43 photoconversion and ultrastructural analysis confirmed the incorporation of imported vesicles into the presynaptic terminal, where they mixed with the native vesicle pools. Our results demonstrate that synaptic vesicle recycling is not confined to individual presynaptic terminals as is widely believed; rather, a substantial proportion of recycling vesicles are shared constitutively between boutons.
The arrival of an action potential at a synapse triggers neurotransmitter release with a limited probability, p(r). Although p(r) is a fundamental parameter in defining synaptic efficacy, it is not uniform across all synapses, and the mechanisms by which a given synapse sets its basal release probability are unknown. By measuring p(r) at single presynaptic terminals in connected pairs of hippocampal neurons, we show that neighboring synapses on the same dendritic branch have very similar release probabilities, and p(r) is negatively correlated with the number of synapses on the branch. Increasing dendritic depolarization elicits a homeostatic decrease in p(r), and equalizing activity in the dendrite significantly reduces its variability. Our results indicate that local dendritic activity is the major determinant of basal release probability, and we suggest that this feedback regulation might be required to maintain synapses in their operational range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.