International public health workers are challenged by a burden of arthropod-borne disease that remains elevated despite best efforts in control programmes. With this challenge comes the opportunity to develop novel vector control paradigms to guide product development and programme implementation. The role of vector behaviour modification in disease control was first highlighted several decades ago but has received limited attention within the public health community. This paper presents current evidence highlighting the value of sub-lethal agents, specifically spatial repellents, and their use in global health, and identifies the primary challenges towards establishing a clearly defined and recommended role for spatial repellent products in disease control.
RESULTSThe Pfizer Population Pharmacokinetic Analysis Guidance is included as Supplementary Appendix S1 online. The full content of the guidance and a general workflow are presented in Figure 1 and Figure 2, respectively, and general recommendations are summarized below. It should be noted that the recommendations in the guidance were based on current best practice and state of knowledge. The guidance will be updated and revised on a regular basis as new methodologies are developed and the model-building process is refined. The guidance was written with internal and external references to avoid in-depth technical and theoretical discussion within the guidance itself: the full list of references applicable to the guidance can be found in the Reference section of the Supplementary Appendix S1 online.The guidance itself does not address tool-specific implementation but is primarily focused on outlining the expected population pharmacokinetic (Pop PK) modeling-related processes and procedures that should be undertaken by the analyst. However, guidance recommendations are based on standard tools and relevant terminology, including NON-MEM (ICON Development Solutions, Ellicott City, MD), 1 Perl speaks NONMEM (PsN), 2 and Xpose. 3 Points to consider before conducting a Pop PK analysisPopulation modeling analysis plan. It is recommended that a population modeling analysis plan (PMAP) be developed to prospectively outline the modeling approach before conducting a Pop PK analysis. In addition, the PMAP should be finalized before database lock if the analysis results are to be included in a regulatory submission. A well-prepared PMAP should provide an overview of the purpose of the modeling, prior information used, the choice of studies/data to be included for analysis, the proposed modeling approach, and assumptions made. The level of detail required in the PMAP depends on the intended use of the modeling analysis, as the plan in some cases can be considered a "living document," i.e., updates to the plan can be made as more information becomes available. A PMAP should facilitate writing of the population modeling analysis report (PMAR) in a timely manner upon completion of model development and should be an effective planning tool both for the analyst and for any reviewer to assess whether the original objectives of the analysis were met. cal and statistical summaries of dependent variables and demographics, including covariates, should be completed to help with identifying potential errors. In addition, this will help to identify the base structural model and components of the statistical model, as well as potential covariate relationships and outliers.Below the limit of quantification. It is not uncommon that some concentration data are censored as below the limit of quantification (BLQ) by the bioanalytical laboratory and reported qualitatively in Pop PK data sets. Commonly used approaches for handling BLQ concentrations have been shown to introduce bias in the parameter estimates and to result in model misspecification...
Bococizumab is a humanized monoclonal antibody binding proprotein convertase subtilisin/kexin type 9, which may be a potential therapeutic option for reducing low-density lipoprotein cholesterol (LDL-C) levels in patients with hypercholesterolemia. In this 24-week, multicenter, double-blind, placebo-controlled, dose-ranging study (NCT01592240), subjects with LDL-C levels≥80 mg/dl on stable statin therapy were randomized to Q14 days subcutaneous placebo or bococizumab 50, 100, or 150 mg or Q28 days subcutaneous placebo or bococizumab 200 or 300 mg. Doses of bococizumab were reduced if LDL-C levels persistently decreased to ≤25 mg/dl. The primary end point was the absolute change in LDL-C levels from baseline to week 12 after placebo or bococizumab administration. Continuation of bococizumab administration through to week 24 enabled the collection of safety data over an extended period. Of the 354 subjects randomized, 351 received treatment (placebo [n=100] or bococizumab [n=251]). The most efficacious bococizumab doses were 150 mg Q14 days and 300 mg Q28 days. Compared with placebo, bococizumab 150 mg Q14 days reduced LDL-C at week 12 by 53.4 mg/dl and bococizumab 300 mg Q28 days reduced LDL-C by 44.9 mg/dl; this was despite dose reductions in 32.5% and 34.2% of subjects at week 10 or 8, respectively. Pharmacokinetic/pharmacodynamic model-based simulation assuming no dose reductions predicted that bococizumab would lower LDL-C levels by 72.2 and 55.4 mg/dl, respectively. Adverse events were similar across placebo and bococizumab groups. Few subjects (n=7; 2%) discontinued treatment because of treatment-related adverse events. In conclusion, bococizumab significantly reduced LDL-C across all doses despite dose reductions in many subjects. Model-based simulations predicted greater LDL-C reduction in the absence of bococizumab dose reduction. The Q14 days regimen is being evaluated in phase 3 clinical trials.
Apixaban is approved for treatment of venous thromboembolism (VTE) and prevention of recurrence. Population pharmacokinetics, pharmacokinetics–pharmacodynamics (anti‐FXa activity), and exposure–response (binary bleeding and thromboembolic endpoints) of apixaban in VTE treatment subjects were characterized using data from phase I–III studies. Apixaban pharmacokinetics were adequately characterized by a two‐compartment model with first‐order absorption and elimination. Age, sex, and Asian race had less than 25% impact on exposure, while subjects with severe renal impairment were predicted to have 56% higher exposure than the reference subject (60‐year‐old non‐Asian male weighing 85 kg with creatinine clearance of 100 mL/min). The relationship between apixaban concentration and anti‐FXa activity was described by a linear model with a slope estimate of 0.0159 IU/ng. The number of subjects with either a bleeding or thromboembolic event was small, and no statistically significant relationship between apixaban exposure and clinical endpoints could be discerned with a logistic regression analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.